The correct answer is
<span>
force per unit charge.
In fact, the electric field strength is defined as the electric force per unit charge experienced by a positive test charge located in the electric field. In formula:
</span>

where
E is the electric field strength
F is the electric force experienced by the charge
q is the positive test charge.
Answer:
Explanation:
v = u +at
u = 0
a = 2.3 m /s²
t = 20 s
v = 2.3 x 20
= 46 m /s
Distance covered under acceleration of 2.3 m/s²
s = ut + 1/2 at²
= 0 + .5 x 2.3 x 20²
= 460 m
After that it moves under free fall ie g acts on it downwards .
v² = u² - 2gh , h is height moved by it under free fall
0 = 46² - 2 x 9.8 h
h = 107.96 m
Total height attained
= 460 + 107.96
= 567.96 m
b ) At its highest point ,it stops so its velocity = 0
c ) rocket's acceleration at its highest point = g = 9.8 downwards .
At highest point , it is undergoing free fall so its acceleration = g
Point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
On the graph, A is the point where magnitude of the acceleration of the particle is greatest as compared to other positions on the graph because the height of point A is the largest as compared to other points of the graph.
The graph shows at which point acceleration of an object is higher and lower so we can conclude that point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
Learn more about acceleration here: brainly.com/question/933224
Learn more: brainly.com/question/25887663
Randall has unconscious assumption that attractive people are more competent
Answer:
(a) Angular acceleration is 1.112 rad/s².
(b) Average angular velocity is 2.78 rad/s .
Explanation:
The equation of motion in Rotational kinematics is:
θ = θ₀ + 0.5αt²
Here θ is angular displacement at time t, θ₀ is angular displacement at time t=0, t is time and α is constant angular acceleration.
(a) According to the problem, θ is 13.9 rad, θ₀ is zero as it is at rest and t is 5 s. Put these values in the above equation:
13.9 = 0 + 0.5α(5)²
α = 1.112 rad/s²
(b) The equation of average angular velocity is:
ω = Δθ/Δt
ω = 
ω = 2.78 rad/s