1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetlanka [38]
4 years ago
11

Which of the following are TRUE concerning rectifier circuits? Select all that apply.

Engineering
1 answer:
Dovator [93]4 years ago
8 0

Explanation:

a. The output of an ideal full wave rectifier is zero volts only when the input is zero volts.

True

The output of an ideal full wave rectifier is zero volts only when the input is zero since 1st diode is forward biased during one half cycle of the input and 2nd diode is forward biased during the other half cycle of the input therefore, it fully utilizes both the input cycles so the output voltage is only zero when the input is zero.

b. Half-wave rectifier circuits need a minimum of 4 diodes to operate.

False

A Half-wave rectifier circuits need a minimum of 1 diode to operate, whereas a full-wave bridge rectifier need minimum of 4 diodes to operate.

c. In an ideal full wave bridge rectifier, half of the diodes are in the ON state and half of the diodes are in the OFF state at any given time the input voltage is not zero.

True

A full-wave bridge rectifier consists of 4 diodes, where 2 diodes are functional in half of the cycle(so the other 2 are off) and other 2 diodes are functional in the other half cycle( so the other 2 are off).

d. The output of an ideal half wave rectifier is zero volts only when the input is zero volts.

False

The output of an ideal half wave rectifier is zero during half of the cycle when the diode is reversed biased and doesn't conduct even though input voltage is not zero volts at this point.

e. A turn-on voltage of a diode (y,) greater than zero can cause the output of a full wave rectifier to be zero volts even when the input is not zero volts.

False

A turn-on voltage of a diode (y,) greater than zero cannot cause the output of a full wave rectifier to be zero rather there will be a little voltage drop across the output of full wave rectifier due to this turn-on voltage of diode which is usually 0.7 volts for silicon based diodes.

f. An advantage of the half wave rectifier is that is can use a smoothing capacitor, while a full wave rectifier cannot.

False

Smoothing capacitor can be used in both half wave rectifier as well as full wave rectifier.

You might be interested in
The ???? − i relationship for an electromagnetic system is given by ???? = 1.2i1/2 g where g is the air-gap length. For current
Artemon [7]

Answer:

a) The mechanical force is -226.2 N

b) Using the coenergy the mechanical force is -226.2 N

Explanation:

a) Energy of the system:

\lambda =\frac{1.2*i^{1/2} }{g} \\i=(\frac{\lambda g}{1.2} )^{2}

\frac{\delta w_{f} }{\delta g} =\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

If i = 2A and g = 10 cm

\lambda =\frac{1.2*i^{1/2} }{g} =\frac{1.2*2^{1/2} }{10x10^{-2} } =16.97

f_{m}=-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }=-\frac{16.97^{3}*2*0.1 }{3*1.2^{2} } =-226.2N

b) Using the coenergy of the system:

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{1.2*2*i^{3/2}  }{3*g^{2} }=-\frac{1.2*2*2^{3/2} }{3*0.1^{2} } =-226.2N

8 0
3 years ago
Kinetic energy is defined as energy of an object in:
Murrr4er [49]

your answer is c. motion

5 0
3 years ago
Read 2 more answers
Consider a multiprocessor system and a multithreaded program written using the many-to-many threading model. Let the number of u
Montano1993 [528]

Answer:

At the point when the quantity of bit strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just part strings to processors and not client level strings to processors. At the point when the quantity of part strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used all the while. Be that as it may, when a part string obstructs inside the portion (because of a page flaw or while summoning framework calls), the comparing processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, in this way expanding the use of the multiprocessor system.When the quantity of part strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just bit strings to processors and not client level strings to processors. At the point when the quantity of bit strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used at the same time. Be that as it may, when a part string hinders inside the piece (because of a page flaw or while summoning framework calls), the relating processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, along these lines expanding the usage of the multiprocessor framework.

4 0
3 years ago
What is the volicity of a rocket?
Marysya12 [62]

Answer:

7.9 kilometers per second

Explanation:

8 0
3 years ago
Read 2 more answers
What happen to the clutch system when you step-on and releasing the clutch pedal?​
soldi70 [24.7K]

Answer:

Step On: Your foot forces the clutch pedal down and then causes it to take up the slack. This, in turn, causes the clutch friction disk to slip, creating heat and ultimately wearing your clutch out.

Step Off: When the clutch pedal is released, the springs of the pressure plate push the slave cylinder's pushrod back, which forces the hydraulic fluid back into the master cylinder.

7 0
3 years ago
Other questions:
  • Ammonia enters an adiabatic compressor operating at steady state as saturated vapor at 300 kPa and exits at 1400 kPa, 140◦C. Kin
    11·1 answer
  • What happens to a commercial airline at cruising altitude if the pilot does not touch the throttles?
    12·1 answer
  • A gas contained within a piston-cylinder undergoes the follow change in states: Process 1: Constant volume from p1 = 1 bar V1 =
    9·1 answer
  • 1.The moist unit weights and degrees of saturation of a soil are given: moist unit weight (1) = 16.62 kN/m^3, degree of saturati
    11·1 answer
  • State 3 advantages and 3 disadvantages of unit rate contract​
    10·1 answer
  • Can someone help me plz!!
    13·1 answer
  • What is the purpose for this experiment
    9·1 answer
  • What is the difference between a modular home and a manufactured home?
    5·1 answer
  • Question 3
    14·1 answer
  • Design an algorithm for computing √n
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!