Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
<u>Answer:</u> The correct answer is 
<u>Explanation:</u>
We are given:

The substance having highest positive
potential will always get reduced and will undergo reduction reaction. Here, silver will always undergo reduction reaction will get reduced.
Chromium will undergo oxidation reaction and will get oxidized.
The half reactions for the above cell is:
Oxidation half reaction: 
Reduction half reaction:
( × 3)
Net equation: 
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the
of the reaction, we use the equation:

Putting values in above equation, we get:

Hence, the correct answer is 
Answer:
Electrical Energy
Explanation:
Batteries store chemical energy and change it to electrical energy.