Answer:
The difference in temperature is significant means that the lower-boiling liquid finishes distilling at a temperature that is too low for the higher-boiling liquid to be in vapor form yet.
Explanation:
The temperature will rise as the vapor of lower-boiling liquid rushes into the distillation head. However once the lower-boiling liquid is done distilling, there is a temperature drop because while the lower temperature liquid is done distilling, the temperature is still too low for the higher-boiling liquid to be rushing in as a vapour, so the temperature drops.
Answer:
a) r = k × [A] × [B]²
b) 3
Explanation:
Let's consider the following generic reaction
A + B + C ⇒ Products
The generic rate law is:
r = k × [A]ᵃ × [B]ᵇ × [C]ⁿ
where
This reaction is first order in A, second order in B, and zero order in C. The rate law is:
r = k × [A]¹ × [B]² × [C]⁰
r = k × [A] × [B]²
The overall order of the reaction is the sum of the individual reaction orders.
1 + 2 + 0 = 3
Answer:
62.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2C₈H₁₈ + 25O₂ —> 16CO₂ + 18H₂O
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Finally, we shall determine the number of mole of O₂ needed to react with 5 moles of C₈H₁₈. This can be obtained as shown below:
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Therefore, 5 moles of C₈H₁₈ will react with = (5 × 25) / 2 = 62.5 moles of O₂.
Thus, 62.5 moles of O₂ is needed for the reaction.
Answer:
The pH of the sample is 3,4.
Explanation:
We calculate the pOH from the formula pOH = -log (OH-). We know that for all aqueous solutions: pH + pOH = 14, and from there we clear pH:
pOH= -log (OH-)=10,60
pH + pOH = 14
pH + 10,60 = 14
pH=14 -10,60
<em>pH=3,4</em>