<span>The law of conservation of matter and energy relates to the cycles in nature, and by that it is also applied to rocks and other materials. All of the rock in the Earth is recycled and accounted for during the rock cycle. Rocks experience physical change, the composition of the material stays the same, it may just change how it looks and chemical changes occur (the suubstance undergoes a chemical reaction that changes the actual makeup of the substance).</span>
Answer:
Explanation:
There are two types of collision.
(a) Elastic collision: When there is no loss of energy during the collision, then the collision is said to be elastic collision.
In case of elastic collision, the momentum is conserved, the kinetic energy is conserved and all the forces are conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The kinetic energy of the system before collision = the kinetic energy after the collision
(b) Inelastic collision: When there is some loss of energy during the collision, then the collision is said to be inelastic collision.
In case of inelastic collision, the momentum is conserved, the kinetic energy is not conserved, the total mechanical energy is conserved and all the forces or some of the forces are non conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The total mechanical energy of the system before collision = total mechanical of the system after the collision
I believe you mean 6.02*10^7 but you want to shift the decimal 7 times to the right which would be 60200000 (:
The movement of the planets and other celestial bodies in the solar system is actually caused by the sun's gravitational pull or force.
Just like the moon orbits the earth because of the gravitational pull by the earth so does gravitational pull by the sun causes planets' and other celestial bodies' orbit.