<span>A transverse wave is one for which the direction of oscillation is perpendicular to the direction of propagation of the wave whereas, for longitudinalwaves oscillations are in the direction of propagation. Ripples in pond water move about the surface of water and they simultaneously move away from the point-0 too.</span><span>
Longitudinal waves include sound waves(vibrations in pressure, particle of displacement, and particle velocity propagated in an elastic medium) and seismic P-waves (created by earthquakes and explosions). In longitudinal waves, the displacement of the medium is parallel to the propagation of thewave.
</span>
Answer:
Yes, the energy is not simply the sum of the individual binding energies at each site, it is the product of energy at each binding site of hemoglobin.
Explanation:
Myoglobin and hemoglobin are two different cells. Myoglobin binds only one oxygen while the hemoglobin has the ability to binds four oxygen atoms at its four sides. Myoglobin present in muscle tissue only while hemoglobin is present in the whole body. Oxyhemoglobin is formed when oxygen binds with hemoglobin cell. This oxygen is take to all cells and energy is released due to the breakdown of glucose molecules with this oxygen.
Answer:
a)
b)
Explanation:
a) Let's use the constant velocity equation:

- v is the speed of the muon. 0.9*c
- c is the speed of light 3*10⁸ m/s


b) Here we need to use Lorentz factor because the speed of the muon is relativistic. Hence the time in the rest frame is the product of the Lorentz factor times the time in the inertial frame.


v is the speed of muon (0.9c)
Therefore the time in the rest frame will be:



No we use the value of Δt calculated in a)

I hope it helps you!
Current in the wire = 2 A
Explanation:
the magnetic field is given by
B= \frac{\mu i}{2\pi r}
μo= 4π x 10⁻⁷ Tm/A
i= current
r=0.02 m
B = magnetic field= 2 x 10⁻⁵ T
2 x 10⁻⁵= (4π x 10⁻⁷)(i) / (2π*0.02)
i=2 A