Answer:
A) 21.2 kg.m/s at 39.5 degrees from the x-axis
Explanation:
Mass of the smaller piece = 200g = 200/1000 = 0.2 kg
Mass of the bigger piece = 300g = 300/1000 = 0.3 kg
Velocity of the small piece = 82 m/s
Velocity of the bigger piece = 45 m/s
Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s
Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s
since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems
Resultant momentum² = 16.4² + 13.5² = 451.21
Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis ( tan^-1 (13.5 / 16.4)
Answer: D.) electromagnetic induction
Explanation: Electroctromagnetic induction may be explained as a process whereby electric current is induced or produced by difference in potential resulting from the movement of conductor across a magnetic field.
In simple terms, an electromotive force is induced when a magnet is moved through a conducting loop.
The electromotive force produced by moving a magnet through a conducting loop can be represented by the relation:
E = - N (dΦ / dt)
Where E = electromotive force in voltage
N = number of loop in conductor
dΦ = change in magnetic Flux
dt = change in time
Answer:
the source of sound moves towards an observe
Explanation:
The Doppler effect is related to waves such as sound or light. the effect causes an increase or decrease in the frequency of sound light or other waves when the souces either move towards or away from the observer. For example the siren of the train to a person on the platform, the redshift seen by astronomers.
Therefore, The Doppler shift can be observed when the source of sound moves towards an observer From a place closer to the observer than the last wave's crest, each consecutive wave crest is sent. Each wave therefore, takes a little less time than the preceding wave to reach the observer.
Answer:
Net force exerted on the radio is 27.5 Newton.
Given:
Mass = 5.5 kg
Acceleration = 5 
To find:
Force exerted on the radio = ?
Formula used:
F = ma
Where F = net force
m = mass
a = acceleration
Solution:
According to Newton's second law of motion,
F = ma
Where F = net force
m = mass
a = acceleration
F = 5.5 × 5
F = 27.5 Newton
Hence, Net force exerted on the radio is 27.5 Newton.