Answer:
<h3>I think this will answer your question. This is information is not mine and this rightfully belongs to <u>columbia.edu.</u></h3><h3><u /></h3>
This brightly colored fish is native to the Indo-Pacific from Australia north to southern Japan and south to Micronesia. The lionfish is usually found in coral reefs of tropical waters, hovering in caves or near crevices. Native regions as well as Savannah, Georgia; Palm Beach and Boca Raton, Florida; Long Island, New York; Bermuda and possibly Charleston. In southern Florida and off the coast of the Carolinas in early to mid 1990s.
<h3><u /></h3>
Can someone please answer this question I'm doing the test now?
The acceleration due to gravity of Mars is 
<u>Explanation:</u>
As per universal law of gravity, the gravitational force is directly proportional to the product of masses and inversely proportional to the square of the distance between them. But in the present case, the gravity need to be determined between Mars and the object on Mars. Since the mass of Mars is greater than the mass of any object. Thus,

Here, G is the gravitational constant, R is the radius of Mars and M, m is the mass of Mars and the object respectively..
Also, according to Newton’s second law of motion, the acceleration of any object will be equal to the ratio of force exerted on it to the mass of the object.
So in order to determine the acceleration due to gravity of Mars, divide the gravitational force of Mars by mass of object on the surface of Mars.




Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back

From the question we are told
If the average velocity during the athlete's walk back to the starting line in Guided Example 2.5 is – 1.50 m/s,
Generally the equation Time spent is mathematically given as
T=\frac{d}{v}
Therefore

Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back

For more information on this visit
brainly.com/question/22271063
relation between potential difference and electric field is given as

so here we know that
d = 3 cm



So now when plates are separated to 4 cm distance carefully
the potential difference between them will change but the electric field between them will remain constant
So at distance of 4 cm also the electric field will be E = 1000 N/C