The answer is (3) HClO. In the Cl2, chlorine has an oxidation number of zero. In HCl, the oxidation number is -1. In HClO2, the oxidation number is +3. In HClO, it is +1. You can calculate this by using O with oxidation number of -2 and H with +1.
1) ΔrH = 2mol·ΔfH(NO) - (ΔfH(O₂) + ΔfH(N₂)).
ΔrH = 2 mol · 90.3 kJ/mol - (0 kJ/mol + 0 kJ/mol).
ΔrH = 180.6 kJ.
2) ΔS = 2mol·ΔS(NO) - (ΔS(O₂) + ΔS(N₂)).
ΔS = 2mol · 210.65 J/mol·K - (1mol · 205 J/mol·K + 1 mol · 191.5 J/K·mol).
ΔS = 24.8 J/K.
3) ΔG = ΔH - TΔS.
55°C: ΔG = 180.6 kJ - 328.15 K · 24.8 J/K = 172.46 kJ.
2570°C: ΔG = 180.6 kJ - 2843.15 K · 24.8 J/K = 110.09 kJ.
3610°C: ΔG = 180.6 kJ - 3883.15 K · 24.8 J/K = 84.29 kJ.
Saliva's buffering capacity and flow of secretion are directly related to the rate and extent of demineralization. ... Saliva can act as a replenishing source and inhibit tooth demineralization during periods of low pH, while promoting tooth remineralization when the pH returns to a neutral state.
Answer:
Oxygen atom
Explanation:
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets. The atoms consist of matter that has a nucleus in the centre.