Answer:
Converted to an amount of energy equal to 4 million tons times the speed of light squared. ejected into space in a solar wind.
Explanation:
The 4 million tons of mass is converted to the amount of energy that is equal to 4 million tons times the speed of light squared. This energy moves from the sun with the help of solar winds and received by the planets present in the solar system. This solar energy moves in the form of solar radiation because there is no medium for propagation so that's why we can say that the mass is converted into energy that moves in the form of radiation in discrete packets.
Answer:
(a) 0.204 Weber
(b) 0.22 Volt
Explanation:
N = 100, radius, r = 10 cm = 0.1 m, B = 0.0650 T, angle is 90 degree with the plane of coil, so theta = 0 degree with the normal of coil.
(a) Magnetic flux, Ф = N x B x A
Ф = 100 x 0.0650 x 3.14 x 0.1 0.1
Ф = 0.204 Weber
(b) B1 = 0.0650 T, B2 = 0.1 T, dt = 0.5 s
dB / dt = (B2 - B1) / dt = (0.1 - 0.0650) / 0.5 = 0.07 T / s
induced emf, e = N dФ/dt
e = N x A x dB/dt
e = 100 x 3.14 x 0.1 x 0.1 x 0.07 = 0.22 V
Answer:
In my opinion the unstoppable object will hit the unmovable object and stop but the wheels will still be rolling and trying to move but can't.
<h3>Hope this helps.</h3><h3>Good luck ✅.</h3>
Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume

Put the value into the formula


We need to calculate the maximum power density in the reactor
Using formula of power density

Where, P = power density
E = energy
V = volume
Put the value into the formula


Hence, The maximum power density in the reactor is 37.562 KW/L.
Aaron's car is moving at speed of 30 m/s
His reaction time is given as 0.7 s
but when he is tired the reaction time is doubled
Now we need to find the distance covered by his car when he is tired during the time when he react to apply brakes
So here since during this time speed is given as constant so we can say that distance covered can be product of speed and time
So here we can use



So the car will move to 42 m during the time when he apply brakes