Answer:
New volume = 150 mL
Explanation:
Initial temperature, T₁ = 35°C
Initial volume, V₁ = 350 mL
We need to find the change in volume when the temperature drops to 15°C.
The relation between the temperature and the volume is given by Charle's law. Let new volume is V₂. It can be given by :

So, the new volume is 150 mL.
Answer:
of water at 30C and 1 atm is 256.834 J/mol·K.
Explanation:
To solve the question, we note the Maxwell relation such as

Where:
= Specific heat of gas at constant pressure = 75.3 J/mol·K
= Specific heat of gas at constant volume = Required
T = Temperature = 30 °C = 303.15 K
α = Linear expansion coefficient = 3.04 × 10⁻⁴ K⁻¹
K = Volume comprehensibility = 4.52 × 10⁻⁵ atm⁻¹
Therefore,
75.3 -
= 
=
- 75.3 = 256.834 J/mol·K.
Carbon-14 and Uranium-238 have something we call a half live, which is basically a known time period for it to change half of its C-14 or U-238 radioactively decay. Since we know how long that is 5730 years for Carbon-14 for half a sample to deteriorate, than we can figure out how old it is.
MgBr2(aq) is an ionic compound which will have the releasing of 2 Br⁻ ions ions in water for every molecule of MgBr2 that dissolves.
MgBr2(s) --> Mg+(aq) + 2 Br⁻(aq)
[Br⁻] = 0.51 mol MgBr2/1L × 2 mol Br⁻ / 1 mol MgBr2 = 1.0 M
The answer to this question is [Br⁻] = 1.0 M
The answer is C,growth spurts,puberty,& sexual maturity