Answer:
2.24 m/s²
Explanation:
Using equation of motion
s = ut +
at²
u = 0 , t = 3.17 s , s = 11.26 m
Put these values in the equation above
11.26 = 0 +.5 x a( 3.17)²
a = 2.24 ms⁻².
So acceleration due to gravity on that planet will be 2.24 m s⁻².
Answer:
1.8 m
Explanation:
Given: Glass falls from a table, smashes 0.6 seconds later
To find: How high a table is
Formula: Vv=gt, dv=1/2gt^2, t=2d/g
Solution: A table's <em>height</em> is measured from the top of the edge down to the floor. The tables are shown both have a height of 30 inches, which is common for many tables.
<u>Data</u>
<u>Equation</u>
- d =

²
<u>Math & Units</u>
- d = 4.905 (0.6²)
- d = 442.676
Hence the table is 1.8 m high
Part A:
Acceleration can be calculated by dividing the difference of the initial and final velocities by the given time. That is,
a = (Vf - Vi) / t
where a is acceleration,
Vf is final velocity,
Vi is initial velocity, and
t is time
Substituting,
a = (9 m/s - 0 m/s) / 3 s = 3 m/s²
<em>ANSWER: 3 m/s²</em>
Part B:
From Newton's second law of motion, the net force is equal to the product of the mass and acceleration,
F = m x a
where F is force,
m is mass, and
a is acceleration
Substituting,
F = (80 kg) x (3 m/s²) = 240 kg m/s² = 240 N
<em>ANSWER: 240 N </em>
Part C:
The distance that the sprinter travel is calculated through the equation,
d = V₀t + 0.5at²
Substituting,
d = (0 m/s)(3 s) + 0.5(3 m/s²)(3 s)²
d = 13.5 m
<em>ANSWER: d = 13.5 m</em>
L<span>ight with a spectral composition that stimulates all three types of the color sensitive </span>cone cells<span> of the </span>human eye<span> in nearly equal amounts appears white.
</span>