Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
The temperature of vinegar does increase the rate of reaction according to the collision theory.
Hope this answers your question!
Answer:
For example, a wave with a time period of 2 seconds has a frequency of 1 ÷ 2 = 0.5 Hz. A radio wave has a time period of 0.0000003333333 seconds.
Answer:
The incorrect statement is: SO₂ gains electrons
Explanation:
A chemical reaction that involves the simultaneous transfer of electrons between two chemical species, is known as the redox reaction.
Given chemical reaction: 2SO₂(g) + O₂(g) → 2SO₃(g)
In this redox reaction, S is present in +4 oxidation state in SO₂ and +6 oxidation state SO₃. Whereas, O is present in 0 oxidation state in O₂ and -2 oxidation state in SO₃.
<u>Therefore, SO₂ loses electrons and thus gets oxidized. Whereas, O₂ gains electrons and thus gets reduced. </u>
<u>In this reaction, SO₂ is the reducing agent and O₂ is the oxidizing agent.</u>