Answer: A barrier should be created to overcome the atmosphere of the Venus, while launching spacecraft to Venus.
Explanation:
The atmosphere of Venus consists of 96.5% carbon dioxide, other composition includes nitrogen and other gases in trace amounts. The large amount of carbon dioxide in the atmosphere can extinguish the missile of the launcher of spacecraft thus it will become difficult in launch of spacecraft to the Venus.
According to molecular orbital theory, regions of wave function with highest probability of finding electrons are areas with constructive interference.
An electron is a negatively charged subatomic particle that can exist either free or bound to an atom (not bound). A bound electron is one of the three primary types of particles that make up an atom, along with protons and neutrons. Protons, neutrons, and electrons combined make up the atom's nucleus. A proton's positive charge balances an electron's negative charge. When an atom has an equal number of protons and electrons, it is said to be in a neutral state. Electrons are distinct from other particles in a number of ways. They have a much lower mass, are found outside the nucleus, and exhibit both wave- and particle-like characteristics. The electron is a basic particle.
To know more about electrons visit :brainly.com/question/23966811
#SPJ4
OK, so to answer this question, you will simply use the molality equation which is as follows:
<span>M1V1 = M2V2
In the givens you have:
M1 = 2M
V1 is the unknown
M2 = 0.4M
V2 = 100 ml
</span>plug in the givens in the above equation:
<span>2 x V1 = 0.4 x 100
</span>therefore:
V1 = 20 ml
Based on this: you should take 20 ml of the 2 M solution and make volume exactly 100 ml in a volumetric flask by diluting in water.