Answer:
1.7 × 10 ^42
Explanation:
Using Nernst equation
E°cell = RT/nF Inq
at equilibrium
Q=K
E°cell = 0.0257 /n Ink= 0.0592/n log K
Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V
Ag+aq)+e−→Ag(s) E∘= 0.80 V
Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s)
balance the reaction
Fe → Fe²⁺ + 2e⁻ reversing for oxidation E° = 0.45 v
2 Ag⁺ +2e⁻ → 2Ag
n = 2 moles and K = equilibrium constant
E° cell = 0.80 + 0.45 = 1.25 V
E° cell = (0.0592 / n) log K
substitute the value into the equations and solve for K
(1.25 × 2) / 0.0592 = log K
42.23 = log K
k = 10^ 42.23
K = 1.7 × 10 ^42
1-pentyne consists of a carbon chain of 5 carbons one with a triple bond. 1-octyne is a carbon chain of 8 carbons with a triple bond at some point. It is known that the longer the carbon chain the higher the boiling point since more energy will be required to break the bonds between carbons. Based on this it is predicted that 1-octyne will have a higher boiling point than 1-pentyne.
The answer is (3) The average velocity of the gas molecules increases. In the closed rigid cylinder, the volume of the gas and number of gas molecules will not change. The number of collision will increase.
Answer:
96.32 %
Explanation:
Given that:
The solubility of compound in hot water = 4.35 g / 100 mL
The solubility of compound in cold water = 0.16 g / 100 mL
Which means that in 100 mL of hot water, the dissolved compound is 4.35 g and in cold water, the dissolved compound is 0.16 g
Hence, on transition, compound that will catalyze is 4.35 - 0.16 g = 4.19 g
So,

Percent recovery for re-crystallization of this compound from water= 96.32 %
There are 70.90g of Cl2 in 1 mol (because 35.45g Cl in one mol). So 77.1g/70.9g≈1.0874 mol.