Answer:
The molarity of the final solutions if these two solutions are mixed is 27.14 
Explanation:
Yo know:
- Solution-1: 25M, 400mL
- Solution-2: 30M, 300 mL
Molarity being the number of moles of solute per liter of solution, expressed by:

You can determine the number of moles that are mixed from each solution as:
Number of moles= Molarity*Volume
So, being 1 L=1000 mL, for each solution you get:
- Solution-1: being 0.400 L=400 mL ⇒ 25 M* 0.400 L= 10 moles
- Solution-2: being 0.300 L=300 mL ⇒ 30 M* 0.300 L= 9 moles
When mixing both solutions, it is obtained that the volume is the sum of both solutions:
Total volume= volume solution-1 + volume solution-2
and the number of total moles will be the sum of the moles of solution-1 and solution-2:
Total moles= moles of solution-1 + moles of solution-2
So the molarity of the final solution is:

In this case, you have:
- moles of solution-1: 10 moles
- moles of solution-2: 9 moles
- volume solution-1: 0.400 L
- volume solution-2: 0.300 L
Replacing:

Solving:

Molarity= 27.14 
<u><em>The molarity of the final solutions if these two solutions are mixed is 27.14 </em></u>
<u><em></em></u>
You could observe stuff like how many inches of rain we got or how many flowers are growing or how was the weather Monday through Friday .also by looking outside of Simply observing the weather outside in the nature
To find the density you must divide the mass by the density.
180kg ÷ 90m³ = 2kg/m<span>³
The density is </span>2kg/m³
<u>Answer:</u> The force that must be applied is 15 N.
<u>Explanation:</u>
Force exerted on the object is defined as the product of mass of the object and the acceleration of the object.
Mathematically,

where,
F = force exerted = ?
m = mass of the object = 3 kg
a = acceleration of the object = 
Putting values in above equation, we get:

Hence, the force that must be applied is 15 N.