The complete question is as follows: Which statement describes the way in which energy moves between a system reacting substances in the surroundings.
A) molecule Collisions transfer thermal energy between the system and its surroundings
B) The thermal energy of the system and it’s surroundings increase
C) The potential energy of the system and it’s surroundings increases
D) molecular collisions create energy that is then released into the surroundings
Answer: The statement, molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Explanation:
When there will occur an increase in kinetic energy of molecules then there will occur more number of collisions.
When kinetic energy between these molecules tends to decrease then they will release heat energy into their surroundings.
As a result, it means that molecule collisions transfer thermal energy between the system and its surroundings.
Thus, we can conclude that the statement molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Answer:
substance A is a liquid, while substance B is a liquid or gas
Answer: A and D, I believe
Explanation:
Answer:
3.81 g Pb
Explanation:
When a lead acid car battery is recharged, the following half-reactions take place:
Cathode: PbSO₄(s) + H⁺ (aq) + 2e⁻ → Pb(s) + HSO₄⁻(aq)
Anode: PbSO₄(s) + 2 H₂O(l) → PbO₂(s) + HSO₄⁻(aq) + 3H⁺ (aq) + 2e⁻
We can establish the following relations:
- 1 A = 1 c/s
- 1 mole of Pb(s) is deposited when 2 moles of e⁻ circulate.
- The molar mass of Pb is 207.2 g/mol
- 1 mol of e⁻ has a charge of 96468 c (Faraday's constant)
Suppose a current of 96.0A is fed into a car battery for 37.0 seconds. The mass of lead deposited is:

Dorsal Side: B
Ventral Side: D
Anterior End: A
Posterior End: C