the force applied when using a simple machine is called the effort force
Here it is given that speed of migrating Robin is 12 m/s relative to air
so we can say that
North
so it will be
Let North direction is along Y axis and East direction is along X axis

also it is given that speed of air is 6.7 m/s relative to ground

now as we know by the concept of relative motion


now by rearranging the terms


now we need to find the speed of Robin which means we need to find the magnitude of its velocity which we found above
So here we will say


so the net speed of Robin with respect to ground will be 13.7 m/s
The answer is A) velocity, because velocity is speed and displacement.
Hope this helps
Answer:
Similarities between magnetic fields and electric fields: ... Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges). Like poles repel; unlike poles attract. Electric field points in the direction of the force experienced by a positive charge ...
Explanation:
copied and pasted from google. I copied and pasted your question into google and got this exact answer
Here is another thing from the same website just not shortened:
Similarities between magnetic fields and electric fields:
- Electric fields are produced by two kinds of charges, positive and negative. Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges).
- Like poles repel; unlike poles attract
- Electric field points in the direction of the force experienced by a positive charge. Magnetic field points in the direction of the force experienced by a north pole.
Differences between magnetic fields and electric fields:
- Positive and negative charges can exist separately. North and south poles always come together. Single magnetic poles, known as magnetic monopoles, have been proposed theoretically, but a magnetic monopole has never been observed.
- Electric field lines have definite starting and ending points. Magnetic field lines are continuous loops. Outside a magnet the field is directed from the north pole to the south pole. Inside a magnet the field runs from south to north.