Answer:
A. Zero
Explanation:
The force on a coil of N turns, enclosing an area, A and carrying a current I in the presence of a magnetic field B, is :
F = N * I * A * B * sinθ
Where θ is the angle between the normal of the enclosed area and the magnetic field.
Since the normal of the area is parallel to the magnetic field, θ = 0
Hence:
F = NIABsin0
F = 0 or Zero
Answer:
a. 37.7 kgm/s b. 0.94 m/s c. -528.85 J
Explanation:
a. The initial momentum of block 1 of m₁ = 1.30 kg with speed v₁ = 29.0 m/s is p₁ = m₁v₁ = 1.30 kg × 29.0 m/s = 37.7 kgm/s
The initial momentum of block 2 of m₁ = 39.0 kg with speed v₂ = 0 m/s since it is initially at rest is p₁ = m₁v₁ = 39.0 kg × 0 m/s = 0 kgm/s
So, the magnitude of the total initial momentum of the two-block system = (37.7 + 0) kgm/s = 37.7 kgm/s
b. Since the blocks stick together after the collision, their final momentum is p₂ = (m₁ + m₂)v where v is the final speed of the two-block system.
p₂ = (1.3 + 39.0)v = 40.3v
From the principle of conservation of momentum,
p₁ = p₂
37.7 kgm/s = 40.3v
v = 37.7/40.3 = 0.94 m/s
So the final velocity of the two-block system is 0.94 m/s
c. The change in kinetic energy of the two-block system is ΔK = K₂ - K₁ where K₂ = final kinetic energy of the two-block system = 1/2(m₁ + m₂)v² and K₁ = final kinetic energy of the two-block system = 1/2m₁v₁²
So, ΔK = K₂ - K₁ = 1/2(m₁ + m₂)v² - 1/2m₁v₁² = 1/2(1.3 + 39.0) × 0.94² - 1/2 × 1.3 × 29.0² = 17.805 J - 546.65 J = -528.845 J ≅ -528.85 J
The kinetic energy is
.
Explanation:
The kinetic energy of an object is given by

where
K is the kinetic energy of the object
m is the mass of the object
v is the speed of the object
For the comet in this problem, we have:
is its mass
is the speed
First, we convert the speed from km/h to m/s:

Therefore, the kinetic energy of the comet is

Learn more about kinetic energy here:
brainly.com/question/6536722
#LearnwithBrainly
Answer:
mass of the neutron star =3.45185×10^26 Kg
Explanation:
When the neutron star rotates rapidly, a material on its surface to remain in place, the magnitude of the gravitational acceleration on the central material must be equal to magnitude of the centripetal acc. of the rotating star.
That is

M_ns = mass odf the netron star.
G= gravitational constant = 6.67×10^{-11}
R= radius of the star = 18×10^3 m
ω = 10 rev/sec = 20π rads/sec
therefore,

= 3.45185... E26 Kg
= 3.45185×10^26 Kg