General waste - medical waste that does not pose any harmful threats
Hazardous waste - medical waste that can be harmful but does not pose a risk to infection
Infectious waste - medical waste materials that poses risk of infection to humans
Radioactive waste - medical waste that contains radioactive material
The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474
Answer:
19.74 N
Explanation:
mass of ball (m) = 0.25 kg
radius (r) = 0.5 m
time (t) = 2 revolutions per seconds = 1/2 = 0.5 second per revolution
find the tension in the string
tension (T) = 
- where velocity (v) =

tension now becomes (T) = 
tension (T) = 
- now substituting the values of mass (m), time (t) and radius (r) into the equation above we have
tension (T) = 
tension (T) =
=
= 19.74 N
Answer:
The horizontal and vertical distances are x = 210 m and y = -240.35 m, respectively.
Explanation:
Using the equation of the displacement in the x-direction, we have:
(let's recall we have a constant velocity in this direction)

Where:
- v(ix) is the initil velocity in the x direction (v(ix) = 30 m/s)
- t is the time (t = 7 s)
Now, we need to use the equation of the displacement in the y-direction to find the vertical distance. Here we have an acceleration (g)

Where:
- v(iy) is the initial velocity at the y-direction. In this case, it will be 0
- t is the time
- g is the acceleration of gravity (g=9.81 m/s²)
Then, the vertical position at 7 s is:


Therefore, the horizontal and vertical distances are x = 210 m and y = -240.35 m, respectively. The minus sign means the <u>negative value in the y-direction.</u>
I hope it helps you!
Answer:
Potential Difference between ends (Voltage)
Temperature.
Material of wire.
Length of wire.
Area of Cross- section.
Explanation: