1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
3 years ago
8

A world class runner can run long distances at a pace of 15 km/hour. That runner expends 800 kilocalories of energy per hour. a)

Find the power (in Watts [W]) the runner is exerting while running. b) Find the total energy (in Joules [J]) exerted by the runner in a 15 km run. c) How many Milky Way (Original Single 52.2g) chocolate bars does the runner need to buy to supply the amount of energy to complete a half-marathon (13.1 miles)? (Cite your source for the number of calories in a Milky Way bar)
Engineering
1 answer:
maks197457 [2]3 years ago
7 0

Answer: a) 1.05kW b) 3.78MJ c) 5.3 bars

Explanation :

A)

Conversions give 900 kcal as 900000 x 4.2 J/cal {4.2 J/cal is the standard factor}

= 3780kJ

And 1 hour = 3600s

Therefore, Power in watts = 3780/3600 = 1.05kW = 1050W

B)

At 15km/hour a 15km run takes 1 hour.

1 hour is 3600s and the runner burns 1050 joule per second.

Energy used in 1 hour = 3600 x 1050 J/s

= 3780000 J or 3.78MJ

C)

1 mile = 1.61km so 13.1 mile is 13.1 x 1.61 = 21.1km

15km needs 3.78 MJ of energy therefore 21.1km needs 3.78 x 21.1/15 = 5.32MJ =5320 kJ

Finally,

1 Milky Way = 240000 calories = 4.2 x 240000 J = 1008000J or 1008kJ

This means that the runner needs 5320/1008 = 5.3 bars

You might be interested in
5. (5 points) Select ALL statements that are TRUE A. For flows over a flat plate, in the laminar region, the heat transfer coeff
finlep [7]

Answer:

The following statements are true:

A. For flows over a flat plate, in the laminar region, the heat transfer coefficient is decreasing in the flow direction

C. For flows over a flat plate, the transition from laminar to turbulence flow only happens for rough surface

E. In general, turbulence flows have a larger heat transfer coefficient compared to laminar flows 6.

Select ALL statements that are TRUE

B. In the hydrodynamic fully developed region, the mean velocity of the flow becomes constant

D. For internal flows, if Pr>1, the flows become hydrodynamically fully developed before becoming thermally fully developed

Explanation:

7 0
3 years ago
A person holds her hand out of an open car window while the car drives through still air at 65 mph. Under standard atmospheric c
Paraphin [41]

Answer:

10.8\ \text{lb/ft^2}

101.96\ \text{lb/ft}^2

Explanation:

v_1 = Velocity of car = 65 mph = 65\times \dfrac{5280}{3600}=95.33\ \text{ft/s}

\rho = Density of air = 0.00237\ \text{slug/ft}^3

v_2=0

P_1=0

h_1=h_2

From Bernoulli's law we have

P_1+\dfrac{1}{2}\rho v_1^2+h_1=P_2+\dfrac{1}{2}\rho v_2^2+h_2\\\Rightarrow P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 95.33^2\\\Rightarrow P_2=10.8\ \text{lb/ft^2}

The maximum pressure on the girl's hand is 10.8\ \text{lb/ft^2}

Now v_1 = 200 mph = 200\times \dfrac{5280}{3600}=293.33\ \text{ft/s}

P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 293.33^2\\\Rightarrow P_2=101.96\ \text{lb/ft}^2

The maximum pressure on the girl's hand is 101.96\ \text{lb/ft}^2

5 0
3 years ago
In DC electrode positive, how much power is at the work clamp?
Korolek [52]

Answer:

1/3 power

Explanation:

I'm just a smart guy

7 0
3 years ago
A 3-phase , 1MVA, 13.8kV/4160V, 60 Hz, transformer with Y-Delta winding connection is supplying a3-phase, 0.75 p.u. load on the
Tanya [424]

Answer:

a) 23.89 < -25.84 Ω

b) 31.38 < 25.84 A

c) 0.9323 leading

Explanation:

A) Calculate the load Impedance

current on load side = 0.75 p.u

power factor angle = 25.84

I_{load} = 0.75 < 25.84°

attached below is the remaining part of the solution

<u>B) Find the input current on the primary side in real units </u>

load current in primary = 31.38 < 25.84 A

<u>C) find the input power factor </u>

power factor = 0.9323 leading

<em></em>

<em>attached below is the detailed solution </em>

8 0
3 years ago
What is the power of a parallel circuit with a resistance of 1,000 omh and current of 0.03a
Sergeeva-Olga [200]

Answer: P = I2R = 0.032 x 1000 =0.9 W

Explanation: The power will be the product of the square of the current and

the resistance of the load. The fact that the circuit is a parallel  circuit is irrelevant to this question.

4 0
3 years ago
Other questions:
  • Can i use two shunts and one meter
    11·2 answers
  • Does the Diesel engine have engine knock or detonation problem? Why?
    6·1 answer
  • When testing a compressor with an ohm meter, a technician read 2 ohms between the start terminal and the case of the compressor.
    5·1 answer
  • The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin me
    8·1 answer
  • The guy wires AB and AC are attached to the top of the transmission tower. The tension in cable AB is 8.7 kN. Determine the requ
    8·1 answer
  • Plzzzz helppp design process in order
    12·1 answer
  • Which of the following is MOST likely to be true about a service manager?
    8·1 answer
  • Raw materials used of silicone rubber
    6·2 answers
  • Conduct online research and write a short report on the origin and evolution of the meter as a measurement standard. Discuss how
    6·1 answer
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!