1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
12

Apply it

Engineering
1 answer:
Kipish [7]3 years ago
7 0

To indentify the machines in our school that have a pulley system as the drive mechanism and the advantages of Pulley system is given below

Explanation:

1.A pulley is a wheel with a groove along its edge, that holds a rope or cable. ... When pulleys are used together in this way, they reduce the amount of force needed to lift a load. A crane uses pulleys to help it lift heavy loads. Pulleys are one of the six simple machines.

2.Examples of pulleys include:

  • Elevators use multiple pulleys in order to function.
  • A cargo lift system that allows for items to be hoisted to higher floors is a pulley system.
  • Wells use the pulley system to hoist the bucket out of the well.
  • Many types of exercise equipment use pulleys in order to function.

3.Using multiple pulleys decreases the amount of force necessary to move an object by increasing the amount of rope used to raise the object. The mechanical advantage (MA) of a pulley system is equal to the number of ropes supporting the movable load.

4.To calculate the mechanical advantage of a pulley you simply have to count the number of rope sections that support whatever object you are lifting (not counting the rope that is attached to the effort). For example, in a one pulley system the MA is 1. ... Therefore your mechanical advantage would be 2 (600/300).

5.The movable pulley is used to reduce the amount of input force to lift a load. The most popular system that uses this pulley would be a well. Unlike the fixed pulley, the movable pulley is attached to the load, and is lifted by pulling up on the rope, making it twice as easier to lift a heavy object.

6.The main benefit of the pulley is that it can actually reduce the amount of force which is required to lift heavy objects and redistributes the direction of the force to lift heavy objects

You might be interested in
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
A resistance of 30 ohms is placed in a circuit with a 90 volt battery. What current flows in the circuit?
blagie [28]

Answer:

3A

Explanation:

Using Ohms law U=I×R solve for I by I=U/R

4 0
3 years ago
A well insulated turbine operates at steady state. Steam enters the turbine at 4 MPa with a specific enthalpy of 3015.4 kJ/kg an
Anarel [89]

Answer:

power developed by the turbine = 6927.415 kW

Explanation:

given data

pressure = 4 MPa

specific enthalpy h1 = 3015.4 kJ/kg

velocity v1 = 10 m/s

pressure = 0.07 MPa

specific enthalpy h2 = 2431.7 kJ/kg

velocity v2 = 90 m/s

mass flow rate = 11.95 kg/s

solution

we apply here  thermodynamic equation that

energy equation that is

h1 + \frac{v1}{2}  + q = h2 + \frac{v2}{2}  + w

put here value with

turbine is insulated so q = 0

so here

3015.4 *1000 + \frac{10^2}{2}  =  2431.7 * 1000 + \frac{90^2}{2}  + w

solve we get

w = 579700 J/kg = 579.7 kJ/kg

and

W = mass flow rate × w

W = 11.95 × 579.7

W = 6927.415 kW

power developed by the turbine = 6927.415 kW

7 0
3 years ago
Help please really fast!!
ra1l [238]

Answer:368 hdhtygtÿ

901 vuiøöńč

Explanation:

6 0
3 years ago
Electric current originates from which part of an atom? *
yanalaym [24]

Answer: Electric current originates from positively charged protons negatively charged electrons of an atom.

Explanation:

The movement of ions (positive or negative) from one point to another is called electric current.

An atom has three sub-atomic particles. These are protons, neutrons and electrons.

Protons are positively charged, neutrons have no charge and electrons are negatively charged. Protons and neutrons reside inside the nucleus of an atom whereas electrons revolve around the nucleus.

So, protons and electrons are responsible for originating electric current form an atom as these are the charged particles.

Thus, we can conclude that electric current originates from positively charged protons negatively charged electrons of an atom.

3 0
3 years ago
Other questions:
  • A tendon-operated robotic hand can be implemented using a pneumatic actuator. The actuator can be represented by
    15·1 answer
  • Which of the following is the correct definition of mechanical energy?
    9·2 answers
  • Our goal is to design a traffic-light controller with the following properties; it lights up the green light (output G) for 15 s
    7·1 answer
  • A 40 mph wind is blowing past your house and speeds up as it flows up and over the roof. If the elevation effects are negligible
    14·1 answer
  • 5. In the decision-making cycle, to Execute means to
    5·2 answers
  • Select the correct answer.
    13·1 answer
  • Question 10 of 25
    6·2 answers
  • How can statistical analysis of a dataset inform a design process
    8·1 answer
  • 1. A thin-walled cylindrical pressure vessel is capped at the end and is subjected to an internal pressure (p). The inside diame
    14·1 answer
  • Complex machines are defined by
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!