Answer:
The reaction must be spontaneous, the disorder of the system increases.
Explanation:
By the Second Law of Thermodynamics, a positive change in entropy is due to a net input heat, and entropy is a measure of the grade of disorder within the system. The net input heat means that resultant goes to the system from the surroundings.
By the First Law of Thermodynamics, a net input heat is due to a positive change in enthalpy.
The reaction is endothermic and spontaneous (since change in entropy is positive).
Answer:
Solution:-
The gas is in the standard temperature and pressure condition i.e. at S.T.P
Therefore,
V
i
=22.4dm
3
V
f
=?
As given that the expansion is isothermal and reversible
∴ΔU=0
Now from first law of thermodynamics,
ΔU=q+w
∵ΔU=0
∴q=–w
Given that the heat is absorbed.
∴q=1000cal
⇒w=−q=−1000cal
Now,
Work done in a reversible isothermal expansion is given by-
w=−nRTln(
V
i
V
f
)
Given:-
T=0℃=273K
n=1 mol
∴1000=−nRTln(
V
i
V
f
)
⇒1000=−1×2.303×2×273×log(
22.4
V
f
)
Explanation:
I'd say it's single replacement/displacement