Answer:
The the quality of the refrigerant at the exit of the expansion valve is 0.179.
Explanation:
Given that,
Initial pressure = 10 bar
Temperature = 22°C
Final pressure = 2.0 bar
We using the value of h

The refrigerant during expansion undergoes a throttling process
Therefore, 
We need to calculate the quality of the refrigerant at the exit of the expansion valve
At 2.0 bar,
The property of ammonia


Using formula

Put the value into the formula



Hence, The the quality of the refrigerant at the exit of the expansion valve is 0.179.
<span>b) The force with a distance of 150 km is 889 N
c) The force with a distance of 50 km is 8000 N
This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question.
Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as
F = (G M1 M2)/r^2
where
F = Force
G = gravitational constant
M1 = Mass 1
M2 = Mass 2
r = distance between center of masses for the two masses.
So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889.
Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits.
If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
Answer:
a)
b)
c) 0 J/K
d)S= 61.53 J/K
Explanation:
Given that
T₁ = 745 K
T₂ = 101 K
Q= 7190 J
a)
The entropy change of reservoir 745 K

Negative sign because heat is leaving.

b)
The entropy change of reservoir 101 K


c)
The entropy change of the rod will be zero.
d)
The entropy change of the system
S= S₁ + S₂
S = 71.18 - 9.65 J/K
S= 61.53 J/K
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1