1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
12

To make a ___________________ , position your car to the right side of the right lane

Physics
2 answers:
pashok25 [27]3 years ago
8 0
A right turn would be the answer probably.
SOVA2 [1]3 years ago
8 0
A right turn. I think. I am not sure what the answer choices are though.
You might be interested in
What new tool did geologists use to estimate the changing flow rates of lava over the duration of this eruption? Hint: The answe
Vladimir [108]

Answer:

Option b, pothographs from drones.

Explanation:

the USGS (U.S. Geological Survey) decided to make photographic captures from drones to the volcanic surfaces, which allowed through observations to understand things like the characteristics of the lava, the height of the volcanic plumes (among others).

Podemos ver en el siguiente enlace un ejemplo de fotografía tomada desde un dron al Kilauea.

https://www.usgs.gov/media/images/k-lauea-volcano-drone-over-lava-channel

4 0
3 years ago
In order to catch a fast-moving softball with your bare hand, you extend your hand forward just before the catch and then let th
hichkok12 [17]
This is a concept of momentum. In equation, momentum is the product of force and distance. When a ball is thrown, its force is constant all throughout unless disturbed by an external force. Therefore, force is the constant of proportionality that relates momentum with distance. When you block a ball from a given distance, you would feel the great force on your hand. In order to reduce the force, you have to follow the direction of the force in order to minimize the impact. By doing this, you gradually decrease the momentum of the ball. 
8 0
3 years ago
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
2 years ago
A head-on, elastic collision between two particles with equal initial speed v leaves the more massive particle (mass m1) at rest
ZanzabumX [31]
<span>1/3 The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r" The equation for kinetic energy is E = 1/2MV^2. So the energy for the system prior to collision is 0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5 The energy after the collision is 0.5rv^2 Setting the two equations equal to each other 0.5r + 0.5 = 0.5rv^2 r + 1 = rv^2 (r + 1)/r = v^2 sqrt((r + 1)/r) = v The momentum prior to collision is -1r + 1 Momentum after collision is rv Setting the equations equal to each other rv = -1r + 1 rv +1r = 1 r(v+1) = 1 Now we have 2 equations with 2 unknowns. sqrt((r + 1)/r) = v r(v+1) = 1 Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r. r(sqrt((r + 1)/r)+1) = 1 r*sqrt((r + 1)/r) + r = 1 r*sqrt(1+1/r) + r = 1 r*sqrt(1+1/r) = 1 - r r^2*(1+1/r) = 1 - 2r + r^2 r^2 + r = 1 - 2r + r^2 r = 1 - 2r 3r = 1 r = 1/3 So the less massive particle is 1/3 the mass of the more massive particle.</span>
8 0
3 years ago
Read 2 more answers
A ball falls from the top of a building. As it falls, its speed increases. Which type of energy is the ball gaining as it falls?
Elina [12.6K]
<h2>Hello!</h2>

The answer is: B. Kinetic energy

<h2>Why?</h2>

Since the ball is falling, speed increases because the gravity acceleration is acting. When speed increases, the kinetic energy increases too, so the ball is gaining kinetic energy.

The gravity acceleration is equal to 9.81\frac{m}{s^{2}}, it means that when falling, the ball will increase it's speed 9.81m every second.

We can calculate the kinetic energy by using the following formula:

KE=\frac{1}{2}*m*v^{2}

Where:

m=mass\\v=velocity

Have a nice day!

<h2 />
5 0
3 years ago
Other questions:
  • In which situation will the friction between an object and the surface on which it is moving be decreased? a. the object is push
    10·1 answer
  • What is the centripetal force that holds planets in orbit?
    6·1 answer
  • The attractive electrostatic force between the point charges +8.46 ✕ 10-6 and q has a magnitude of 0.967 n when the separation b
    5·1 answer
  • Which is it. I don't understand
    10·2 answers
  • Why is hydroelectric power considered to be an example of multiple transfers of energy?
    10·1 answer
  • I don't want the answer i just need help on figuring out how to solve this!
    12·1 answer
  • Look at the two wave diagram.Which best describes the difference between wave A and wave B
    15·1 answer
  • Consider a one-dimensional crystal (similar to a carbon nanowire) with length 10 um and lattice spacing 0.1 nm.
    5·1 answer
  • Changr 20 min in to hr​
    5·1 answer
  • 1. How much energy is needed just to melt 0.56kg of ice at 0◦ C?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!