Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + (13 x 2)
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]

Explanation:
Newton's 2nd Law can be expressed in terms of the object's momentum, in this case the expelled exhaust gases, as
(1)
Assuming that the velocity remains constant then

Solving for
we get

Before we plug in the given values, we need to convert them first to their appropriate units:
The thrust <em>F</em><em> </em> is

The exhaust rate dm/dt is


Therefore, the velocity at which the exhaust gases exit the engines is


Answer is C: Ability to see three-dimensional images of the surfaces of object
Explanation:
To enable the technician see fractures and broken particles in a better resolution as the SEM sees the peaks and valley of the structure.
Answer:
vb = 22.13 m/s
Explanation:
ma = 124 kg
mb = 13 kg
vi = 2.10 m/s
According to the property of conservation of momentum, and considering that, initially, both the astronaut and the bag moved together at 2.10 m/s:

The minimum final velocity of the bag, vb, the will keep the astronaut from drifting away forever occurs when va = 0:

The minimum final velocity of the bag is 22.13 m/s.