Answer:
456.143684211 seconds
564.3 m
Explanation:
s = Distance
v = Velocity
Time is given by


Difference in time = 866.67-410.526315789 = 456.143684211 seconds
According to the question

The students would have to walk 564.3 m
Option b) Stomach is most likely to have the most muscles.
There are five main muscles in stomach pyramidalis, rectus abdominus, external obliques, internal obliques, and transversus abdominis.
Muscles circulate frame parts by contracting after which relaxing. muscular tissues can pull bones, however, they cannot push them to return to their unique role. so they paintings in pairs of flexors and extensors. The flexor contracts to bend a limb at a joint.
The muscle groups that circulate our frame elements are called skeletal muscles, and they're a form of striated muscle. We will actively manipulate those with our brains. another sort of striated muscle is those that maintain our hearts pumping, which we are not able to actively control.
Muscles pull at the joints, allowing us to move. a couple of muscular tissues are used for any sort of motion of a bone. Although we are sitting flawlessly nevertheless, muscle tissues at some point in the frame are constantly shifting.
Learn more about Muscles here: brainly.com/question/1283837
#SPJ1
Answer: - 45000 N.s
Explanation: Impulse is equal to the change in momentum
J = Δp
To solve for impulse we calculate the change in momentum
Δp = m ( Δv)
= 1500 kg ( 10 m/s - 40 m/s)
= - 45000 N.s
Answer:
Moment of Inertia, I = 0.016 kgm²
Explanation:
Mass of the ball, m = 0.20 kg
Length of the pitcher's arm, l = 0.28
Radius of the circular arc, r = 0.28 m
Moment of Inertia is given by the formula:
I = mr²
I = 0.20 * 0.28²
I = 0.20 * 0.0784
I = 0.01568
I = 0.016 kgm²
Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>