If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Answer:
Explanation:
Given
mass of boy 
mass of girl 
speed of girl after push 
Suppose speed of boy after push is 
initially momentum of system is zero so final momentum is also zero because momentum is conserved




i.e. velocity of boy is 2.82 m/s towards west
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years
Answer:
Explanation:
Let acceleration of fall be a .
v² = u² + 2as
v = 3.8 m /s
u = 0
s = 3.5 m
3.8² = 0 + 2 x a x 3.5
a = 2.06 m /s²
Since this acceleration is less than g , an upward force is acting on the firefighter in the form of friction . Let this force be F . Let mass of the firefighter be m .
m = 765 / 9.8
= 78.06 kg
mg - F = ma
765 - F = 78.06 x 2.06
765 - F = 160.8
F = 604.2 N .
They are relatively straight or as straight as they are going to get during a given month that is when a full moon occurs.