(a) the principle of aerodynamic convergence
(b) the centripetal force
(c) Conservation of angular momentum
(d) Conservation of kinetic energy
(e) None of these
Conservation of angular momentum
Answer: Option C.
<u>Explanation:</u>
The law of conservation of angular momentum expresses that when no outer torque follows up on an article, no difference in precise force will happen.
The law of conservation of angular momentum expresses that the angular energy of a body that is the result of its snapshot of latency about the hub of revolution and its rakish speed about a similar pivot, can't change except if an outside torque follows up on the framework.
Answer:

Explanation:
<em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u>s</u></em><em><u> </u></em><em><u>y</u></em><em><u>o</u></em><em><u>u</u></em><em><u> </u></em><em><u>:</u></em><em><u>)</u></em><em><u>)</u></em><em><u>)</u></em>
Answer: D. The elements have the same number of valence electrons
Explanation: The chemical reactivity of elements is governed by the valence electrons present in the element.
The elements present in the same group or vertical column have similar valence configurations and thus behave similarly in chemical reactions or have similar bonding properties.
For Example: Both fluorine and chlorine belong to same family or group and both have 7 electrons in their valence shell and thus accept single electron to attain noble gas configuration.




thus both would bond with a cation bearing a single positive charge.
This question sounds like it came after some activity where
some forces were observed. Since we were not there, and
we don't know what the activity was, we don't know what forces
were observed, and we have no clue to how they might be related
to the motion of the Earth around the sun.
Answer:
look at explanation
Explanation:
If heat rises, then why is it so cold at the top of a mountain? Heat does indeed rise. More specifically, a mass of air that is warmer than the air around it expands, becomes less dense, and will therefore float atop the cooler air. ... So when warm air rises, it cools off.