Answer:
Physical conditions like temperature and pressure affect state of matter. ... When the pressure exerted on a substance increases, it can cause the substance to condense. Decreasing pressure can cause it to vaporize. For some types of rock, decreasing pressure can also cause them to melt.
Answer:
9 N
Explanation:
The centripetal force F is F = mrω^2 = (mv^2)/r where m is mass, r is radius of the curve, ω is angular velocity and v is tangential velocity.
In this case, m = 0.5kg, r = 0.5m, v = 3m/s
So F = [0.5kg(3m/s)^2]/0.5m = 9kg-m/s^2 which is 9N
Answer:
Jim's kinetic energy is 54.67 J.
Explanation:
Given that,
Mass, m = 15 kg
Velocity, V = 2.7 m/s
We need to find the Jim's kinetic energy. We know that when the object is in motion, it has kinetic energy. This energy is given by :


E = 54.67 J
So, Jim's kinetic energy is 54.67 J. Hence, this is the required solution.
Answer & Explanation:
A provisional patent application, also called a PPA, shows your invention as being in the process of getting a patent. This means that you will be safe from others copying your idea while your patent application is still being processed.
Answer:
a) The object must have constant velocity.
d) The object must have zero acceleration.
Explanation:
We can solve the problem by using Newton's second law, which states that the net force acting on an object is equal to the product between mass and acceleration:

where
F is the net force
m is the mass of the object
a is the acceleration
In this problem, the net force on the object is zero:
F = 0
This means that the acceleration of the object is also zero, according to the previous equation:
a = 0
So statement (d) is correct. Moreover, acceleration is defined as the rate of change of velocity:

Which means that
, so the velocity is constant. Therefore, statement (a) is also correct. The other two statements are false because:
b)The object must be at rest. --> false, the object can be moving at constant velocity, different from zero
c)The object must be at the origin. --> false, since the object can be in motion