1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
3 years ago
6

If a man weighs 750 n on the earth, what would he weigh on jupiter, where the free-fall acceleration is 25.9 m/s2?

Physics
1 answer:
Zepler [3.9K]3 years ago
4 0
1982.14N is the answer
You might be interested in
What is the easiest way to increase the magnetic force acting on the rotor in an induction motor?
Schach [20]

Answer:

Explanation:

Magnets are of two major forms namely the permanent magnet and the temporary magnets. Temporary magnets magnetizes and demagnetize easily while permanent magnets does not magnetizes and demagnetize easily.

This permanents magnets are applicable in loudspeakers, generators, induction motor etc.

To increase the

The following will tend to increase the magnetic force acting on the rotor in an induction motor.

1. Increasing the strength of the bar magnet. Increase in strength of the magnet will lead to increase in the magnetic force acting on the rotor.

2. Increase in the magnetic line of force also known as the magnetic flux around the magnet will also increase the magnetic force acting on the rotor.

6 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
What is the weight of a 5.00 kg object on Earth? Assume g=9.81 m/s^2.
Softa [21]

<em>weight = (mass) x (gravity)</em>

Weight = (5.00 kg) x (9.81 m/s²)

weight = (5.00 x 9.81) (kg-m/s²)

<em>Weight = 49.05 Newton</em>

7 0
3 years ago
The _______ is the time required for one complete wave oscillation to occur.
aleksandrvk [35]
Period is the answer

6 0
3 years ago
Read 2 more answers
Which form of
Soloha48 [4]
I think it’s C b/c it works for me
3 0
3 years ago
Other questions:
  • When a steady direct current flows through a coil, the only opposition to the flow of current is the resistance of the wire from
    11·1 answer
  • Which of the following is a physical property?
    9·2 answers
  • What components must be built to create hydroelectric power?
    14·1 answer
  • How can a river be used to produce electricity?
    13·1 answer
  • Consider a point on a bicycle wheel as the wheel turns about a fixed axis, neither speeding up nor slowing down. Compare the lin
    7·1 answer
  • Sunlight is a form of electromagnetic energy.
    14·1 answer
  • A person pushes a box across the floor the energy from the person moving arm is transferred to the box in the box in the floor b
    12·1 answer
  • The graph shows the amplitude of a passing wave over time in seconds (s) What is the approximate frequency of the wave shown? A.
    15·1 answer
  • A car has a weight of 25000 N and its brakes can apply a maximum force of 628 N to stop it. The car is initially moving at a spe
    12·1 answer
  • A spring stretches 2 meters when a 12 N force is acting on it. What is the spring constant (k)? 10 N/m 0.17 N/m 2 N/m 6 N/m
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!