Answer:
Options 1 and 5 are correct
Explanation:
Magnetic field lines can never cross, the field is unique at any point in space. Magnetic field lines are continuous, forming closed loops without beginning or end. They go from the north pole to the south pole.
Magnetic field lines form closed loops but do not intersect.
Electric field lines originate at the positive charges and terminate at the negative charges. They move in a straight line and are parallel. Electric field lines neither form closed loops nor intersect.
Since, magnetic field lines form closed loops and move from North to South pole, they come out of north poles outside the magnet and into north poles inside the magnet, they also go into south poles outside the magnet and out of south poles inside the magnet.
Answer:
0.243 m/s
Explanation:
From law of conservation of motion,
mu+m'u' = V(m+m')................. Equation 1
Where m = mass of the first car, m' = mass of the second car, initial velocity of the first car, u' = initial velocity of the second car, V = Final velocity of both cars.
make V the subject of the equation
V = (mu+m'u')/(m+m')................. Equation 2
Given: m = 260000 kg, u = 0.32 m/s, m' = 52500 kg, u' = -0.14 m/s
Substitute into equation 2
V = (260000×0.32+52500×(-0.14))/(260000+52500)
V = (83200-7350)/312500
V = 75850/312500
V = 0.243 m/s
===> Distance fallen from rest in free fall =
(1/2) (acceleration) (time²)
(122.5 m) = (1/2) (9.8 m/s²) (time²)
Divide each side by (4.9 m/s²): (122.5 m / 4.9 m/s²) = time²
(122.5/4.9) s² = time²
Take the square root of each side: 5.0 seconds
===> (Accelerating at 9.8 m/s², he will be dropping at
(9.8 m/s²) x (5.0 s) = 49 m/s
when he goes 'splat'. We'll need this number for the last part.)
===> With no air resistance, the horizontal component of velocity
doesn't change.
Horizontal distance = (10 m/s) x (5.0 s) = 50 meters .
===> Impact velocity = (10 m/s horizontally) + (49 m/s vertically)
= √(10² + 49²) = 50.01 m/s arctan(10/49)
= 50.01 m/s at 11.5° from straight down,
away from the base of the cliff.