1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
15

Thermohaline circulation is mainly due to

Physics
2 answers:
Nataliya [291]3 years ago
8 0
Thermohaline circulation (THC) is mainly caused by global density from gradients created by surface heat and freshwater fluxes
patriot [66]3 years ago
3 0
It's a large part of a large scale ocean that is driven by global density gradients created by surface heat and water fluxes
You might be interested in
You are sitting on the beach and wondering about the properties of mechanical waves. Describe them in terms of ocean waves.
Rudiy27

Answer:

The ocean waves is a mechanical wave that transmits mechanical energy in the wave by the synchronized and repeated oscillation of the waters about an equilibrium level such that as the wave approaches the shoreline, and the water depth decreases, the height of the wave also increases reflecting the effective transmission of energy while the medium which is the water through which the wave propagates, move back and forth within a small region

Explanation:

A mechanical wave like other waves is the oscillation of a field about an equilibrium level. In mechanical waves, the field consists of the oscillating matter such that the wave transmits energy through a medium. The displacement of the medium through which the wave energy is limited such that the wave energy is conserved to travel far.

7 0
4 years ago
Express the vector R<br> B<br> in terms of A, B, C, and Ď, the edges of a<br> parallelogram.
Vadim26 [7]

Answer:

R=0.5B+0.5C+2A+D

Explanation:

By the triangular law of vector addition

vector R= vector B- vector D

As A,B,C,D are edges of the parallelogram,

A is parallel to D but opposite in direction.

Therefore

A = (-D);A//D;

2A=-2D

B is parallel to C and in same direction.

B//C\\B=C\\

0.5B=0.5C\\

R= B-D;\\R= 0.5B+0.5B-D;\\R=0.5B+0.5C-D;\\R=0.5B+0.5C-2D+D;\\R=0.5B+0.5C+2A+D;

7 0
3 years ago
An object with mass 100 kg moved in outer space. When it was at location &lt;8, -30, -4&gt; its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
Gold has 118 neutrons. If a gold atom were to lose a neutron, what would happen?
nexus9112 [7]

Answer:

answer is B! if it adds one it becomes platinum and if it loses one it becomes mercury.

6 0
3 years ago
how long does it take an acorn to hit the ground after dropping from the branch of a tree 12.5 m high?
Grace [21]
The right formula to use is: T^2= 2d/g
where T= time taken
d = 12.5m
g = is a constant and is equal to 9.8m/s
therefore, T^2 = 2*12.5/9.8 
Using the values above, the time taken for the acorn to reach the ground is 1.59 second
T = 1.59 S
6 0
4 years ago
Other questions:
  • A sprinter runs 200m west and 100 m east her displacement is
    10·2 answers
  • You buy a magnifying glass at the store. The lens in the magnifying glass is a double convex lens, a lens with two convex curved
    13·1 answer
  • A student is trying to decide what to wear.His bedroom is at 20.0 °C.His skin temperature is 35.0 °C.The area of his exposed ski
    9·1 answer
  • The term blank comes from an old English word, springen, meaning "to jump"
    6·1 answer
  • Substance X is in a chamber (Chamber 1) containing 10L of fluid. The concentration of substance X in this chamber is 100mmol/L.
    13·1 answer
  • Two identical bodies are sliding toward each other on a frictionless surface. One moves at 1 m/s and the other at 2 m/s. They co
    5·1 answer
  • If 36C ofcharge pass through a write in 4s current is it carrying?​
    10·1 answer
  • A cylindrical glass that is 10cm high is partially filled with water. You see the glass in two positions. What is the height of
    8·1 answer
  • Two capacitors C1 = 1.5 μF and C2 = 5 μF are in series. If the charge stored by C1 is 10 C, determine the charge stored by C2. a
    5·1 answer
  • What is the acceleration of a 25 kg box that has 50 N of force applied to the right?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!