The false statement would be :
C. constructive interference occurs when the crest of one wave overlaps the trough of another and their individual effects are reduced or cancelled out.
Constructive interference should be when the crest of one wave overlaps another and their individual effects are add up, becoming a single wave of increased amplitude<span />
Answer:
The final kinetic energy is
Explanation:
From the question we are told that
The electric field is 
The charge on the object is 
The mass of the object is 
The distance moved by the object is 
The workdone on the object by the fields is mathematically represented as
![W = [qE + mg]d](https://tex.z-dn.net/?f=W%20%3D%20%20%5BqE%20%2B%20mg%5Dd)
Now this workdone is equivalent to the final kinetic energy so
![K = W = [qE + mg]d](https://tex.z-dn.net/?f=K%20%3D%20W%20%3D%20%20%5BqE%20%2B%20mg%5Dd)
substituting values
![K = W = [4.5*10^{-3 } *100 + 0.68 * 9.8]* 1](https://tex.z-dn.net/?f=K%20%3D%20W%20%3D%20%20%5B4.5%2A10%5E%7B-3%20%20%7D%20%2A100%20%20%2B%200.68%20%2A%209.8%5D%2A%201)

Answer: F = 2N
Explanation: If a current i is flowing in a wire of length L lying in a region of magnetic field B, then the magnetic force acting on the wire is given by
F = BIL
Please find the attached file for the solution
The force of the racket affects the ball's motion because it changes the momentum of the ball.
<h3>Impulse received by the ball</h3>
The impulse received by the ball through the racket affects the motion because it changes the momentum of the ball.
The ball which is initially at rest, will gain momentum after been hit with the racket.
J = ΔP = Ft
where;
- J is the impulse received by the ball
- ΔP is change in momentum of the ball
- F is the applied force
- t is the time of action
Thus, the force of the racket affects the ball's motion because it changes the momentum of the ball.
Learn more about impulse here: brainly.com/question/25700778
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.