1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
6

Air flows through a device in which heat and work is exchanged. There is a single inlet and outlet, and the flow at each boundar

y is steady and uniform. The inlet flow has the following properties: flowrate 50 kg/s, T 25 °C, and velocity 150 m/s. Heat is added to the device at the rate of 42 MW, and the shaft work is -100 kW (assume the efficiency is 100 %). The exit velocity is 400 m/s Calculate the specific stagnation enthalpy (J/kg or kJ/kg) at the inlet, and use the 1st Law to calculate the specific stagnation enthalpy at the exit. Assume constant cp1.0 kJ/kg -K. Calculate the temperature of the air at the exit. Was the assumption of constant cp a good one?
Engineering
1 answer:
Pepsi [2]3 years ago
7 0

Answer:

11548KJ/kg

10641KJ/kg

Explanation:

Stagnation enthalpy:

h_{T} = c_{p}*T + \frac{V^2}{2}

given:

cp = 1.0 KJ/kg-K

T1 = 25 C +273 = 298 K

V1 = 150 m/s

h_{1} = (1.0 KJ/kg-K) * (298K) + \frac{150^2}{2} \\\\h_{1} =  11548 KJ / kg

Answer: 11548 KJ/kg

Using Heat balance for steady-state system:

Flow(m) *(h_{1} - h_{2} + \frac{V^2_{1} - V^2_{2}  }{2} ) = Q_{in} + W_{out}\\

Qin = 42 MW

W = -100 KW

V2 = 400 m/s

Using the above equation

50 *( 11548- h_{2} + \frac{150^2 - 400^2 }{2} ) = 42,000 - 100\\\\h_{2} = 10641KJ/kg

Answer: 10641 KJ/kg

c) We use cp because the work is done per constant pressure on the system.

You might be interested in
A consolidation test was performed on a sample of fine-grained soil sample taken from a depth such that the vertical effective s
Scorpion4ik [409]

Answer:

The settlement that is expected is 1.043 meters.

Explanation:

Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil

The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

\Delta H=\frac{H_oC_c}{1+e_o}log(\frac{\bar{\sigma_o}+\Delta \bar{\sigma }}{\bar{\sigma_o}})

where

'H' is the initial depth of the layer

C_c is the Compression index

e_o is the inital void ratio

\bar{\sigma_o} is the initial effective stress at the depth

\Delta \bar{\sigma_o} is the change in the effective stress at the given depth

Applying the given values we get

\Delta H=\frac{8\times 0.3}{1+0.87}log(\frac{154+28}{154})=1.04

3 0
3 years ago
A cyclic tensile load ranging from 0 kN to 55 kN force is applied along the length of a 100 mm long bar with a 15 mm x 15 mm squ
Yuliya22 [10]

Answer:

square cross section. The bar is made of a 7075-T6 aluminum alloy which has a yield strength of 500 MPa, a tensile strength of 575 MPa, and a fracture toughness of 27.5 MPaâm.

Required:

a. What is the nominal maximum tensile stress on the bar?

b. If there were an initial 1.2 mm deep surface crack on the right surface of the bar, what would the critical stress needed to cause instantaneous fast fracture of the bar be?

7 0
3 years ago
Why will screws never replace nails​
cupoosta [38]

Answer:

because people have different opinions on nails and screws

Explanation:

3 0
3 years ago
The electric motor exerts a torque of 800 N·m on the steel shaft ABCD when it is rotating at a constant speed. Design specificat
kodGreya [7K]

Answer:

d= 4.079m ≈ 4.1m

Explanation:

calculate the shaft diameter from the torque,    \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}

Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).

r = Radius of the shaft.

T = Twisting Moment or Torque.

J = Polar moment of inertia.

C = Modulus of rigidity for the shaft material.

l = Length of the shaft.

θ = Angle of twist in radians on a length.  

Maximum Torque, ζ= τ ×  \frac{ π}{16} × d³

τ= 60 MPa

ζ= 800 N·m

800 = 60 ×  \frac{ π}{16} × d³

800= 11.78 ×  d³

d³= 800 ÷ 11.78

d³= 67.9

d= \sqrt[3]{} 67.9

d= 4.079m ≈ 4.1m

3 0
3 years ago
Read 2 more answers
A horizontal pipe has an abrupt expansion from D1 5 8 cm to D2 5 16 cm. The water velocity in the smaller section is 10 m/s and
anyanavicka [17]
  • Answer:  Explanation:  Application of the bernoulli's equation comes in from conservation of mass flow.  The cross sectional area of the two pipes are calculated. from A = πD²/4 The velocity of water from conservation of mass flow is also calculated ; V2 = Ac1V1/Ac2 The Loss coefficient is then calculated from KL = (1 - Ac1²/Ac2²)² Then the head Loss (hL) is calculated  The detailed calculated and appropriate steps is as shown in the attached files.

5 0
3 years ago
Other questions:
  • A 1-lb collar is attached to a spring and slides without friction along a circular rod in a vertical plane. The spring has an un
    6·1 answer
  • A distillation column is initially designed to separate a mixture of toluene and xylene at around ambient temperature (say, 100°
    13·1 answer
  • Which process is a from of mechanical weathering
    8·1 answer
  • Adore.aaliyah_ add me loves !
    7·1 answer
  • A combinational switching circuit has four inputs (A, B, C, D) and one output (F).
    9·1 answer
  • Can be used to eliminate rubbing friction of wheel touching frame. 1.Traction 2.Thrust washer
    9·1 answer
  • How do you build a house.
    15·1 answer
  • Air modeled as an ideal gas enters a combustion chamber at 20 lbf/in.2
    10·1 answer
  • Select the correct answer <br><br> What is the simplest definition of a manufacturing process?
    5·2 answers
  • 1)What are the three previous manufacturing revolutions Mr. Scalabre mentions? When did these take place?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!