Mass of Co(NO₃)₂ = 1.95 g
V KOH = 0.350 L
[KOH] = 0.220 M
Kf = 5.0 x 10⁹
molar mass of Co(NO₃)₂ = 182.943 g/mol
so [Co(NO₃)₂] = 1.95 / (0.350 * 182.943) = 0.03045 M
[Co²⁺] = 0.03045 M
[OH⁻] = 0.22 M
chemical reaction:
Co²⁺(aq) + 4 OH⁻ ⇄ Co(OH)₄²⁻
I (M) 0.03045 0.22 0
C (M) - 0.03045 - 4 (0.03045) 0.03045
E (M) - x 0.22 - 4(0.03045) 0.03045
= 0.0982
Kf = [Co(OH)₄²⁻] / [Co⁺²][OH⁻]⁴
5.0 x 10⁹ = (0.03045) / x (0.0982)⁴
x = 6.5489 x 10⁻⁸
at equilibrium:
[Co²⁺] = 6.54 x 10⁻⁸
[OH⁻] = 0.0982 M
[Co(OH)₄²⁻] = 0.03045 M
The ion N³⁻ is called the azide ion. In its neutral state, it occurs as the element Nitrogen. The atomic number of Nitrogen is 7. When it turns into an anion (negatively charged ion), it gains 3 more electrons. That's why its net charge becomes -3. It means that the protons is still 7, but the electrons are now 10.
Overall charge = +7 + -10 = -3
Answer: The answer is Z only
I’m assuming the answer choices are
1) x only
2) Z only - the answer
3) X and Y
4) X and Z
Explanation:
Formula:

Given:
Density=3.4
Volume=500.0
Plug them into the formula:
Final answer: 1700g
Answer:
The first 5 are exothermic reaction because heat is in product means heat is evolved or given out.
And last no reaction shows that heat is required so last reaction is endothermic reaction.
Explanation:
And heat is evolved in exothermic reaction and heat is absorbed in endo thermic reaction