1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped :D
The answer is never because there's no electricity
The answer is weak intermolecular attractions volume and shape of container. The molecules of gases have high kinetic energy compared to those of liquids and solids hence they are farther apart from one another. This results to weak intermolecular forces. Gases also expand to fit the container hence have no definite shape or volume.
Answer:
49.14 carat.
Explanation:
From the question given above, we obtained the following data:
Volume of diamond = 2.8 mL
Mass of diamond (in carat) =.?
Next, we shall determine the mass of diamond in grams (g). This can be obtained as follow:
Volume of diamond = 2.8 mL
Density of diamond = 3.51 g/mL
Mass of diamond ( in grams) =?
Density = mass /volume
3.51 = mass /2.8
Cross multiply
Mass of diamond (in g) = 3.51 × 2.8
Mass of diamond (in g) = 9.828 g
Finally, we shall Convert 9.828 g to carat. This can be obtained as follow:
1 g = 5 carat
Therefore,
9.828 g = 9.828 g /1 g × 5 carat
9.828 g = 49.14 carat.
Therefore, the mass of the diamond in carat is 49.14 carat.
Answer:
I think it is mixture and of chemical reaction