1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firlakuza [10]
3 years ago
15

How well would a piece of hot metal heat the cool water ?

Physics
1 answer:
soldier1979 [14.2K]3 years ago
7 0

Answer: When the hot metal washers are placed in the room temperature water, the faster-moving metal atoms hit the slower-moving water molecules and make the water molecules move a little faster. This causes the temperature of the water to increase.

Explanation

You might be interested in
A 2 kg package is released on a 53.1° incline, 4 m from a long spring with force constant k = 140 N/m that is attached at the bo
Aneli [31]

Answer:

A) The speed of the package just before it reaches the spring = 7.31 m/s

B) The maximum compression of the spring is 0.9736m

C) It is close to it's initial position by 0.57m

Explanation:

A) Let's talk about the motion;

As the block moves down the inclines plane, friction is doing (negative) work on the block while gravity is doing (positive) work on the block.

Thus, the maximum force due to

static friction must be less than the force of gravity down the inclined plane in order for the block to slide down.

Since the block is sliding down the inclined plane, we'll have to use kinetic friction when calculating the amount of work (net) on the block.

Thus;

∆Kt + ∆Ut = ∆Et

∆Et = ∫|Ff| |ds| = - Ff L

Where Ff is the frictional force.

So ∆Kt + ∆Ut = - Ff L

And so;

(1/2)m((vf² - vo²) + mg(yf - yo) = - Ff L

Resolving this for v, we have;

V = √(2gL(sinθ - μkcosθ)

V = √(2 x 9.81 x 4) (sin53.1 - 0.2 cos53.1)

V = √(78.48) (0.68))

V = √(53.3664)

V= 7.31 m/s

B) For us to find the maximum compression of the spring, let's use the change in kinetic energy, change in potential energy and the work done by friction.

If we start from the top of the incline plane, the initial and final kinetic energy of the block is zero:

Thus,

∆Kt + ∆Ut = ∆Et

And,

∆E = −Ff ∆s

Thus;

mg(yo - yf) + (k/2)(∆(sf)² - ∆(so)² = −Ff ∆s

Now let's solve it by putting these values;

yf − y0 = −(L + ∆d) sin θ; ∆s = L + ∆d; ∆sf = ∆d; and ∆s0 = 0 where ∆d is the maximum compression in the spring.

So, we have;

((1/2 )(K)(∆d )²) − ∆d (mg sin θ − (µk)mg cos θ) + ((µk)mgLcos θ − mgLsin θ) = 0

Let's rearrange this for easy solution.

((1/2)(K)(∆d)²) − ∆d (mg sin θ − (µk)mg cos θ) - L(mgsin θ - (µk)mgcos θ) = 0

Divide each term by (mgsin θ - (µk)mgcos θ) to get;

[((K/2)(∆d)²)}/{(mgsin θ - (µk)mgcos θ)}] - ∆d - L = 0

Putting k = 140,m = 2kg, µk = 0.2 and θ = 53.1° and L=4m, we obtain;

5.247(∆d)² - ∆d - 4 = 0

Solving as a quadratic equation;

∆d = 0.9736m

C) let’s find out how high the block rebounds up the inclined plane with the fact that final and initial kinetic energy is zero;

mg(yf − yo) + 1 /2 k (∆s f² − ∆s o²) = −Ff ∆s

Now let's solve it by putting these values; yf − y0 = (L′ + ∆d)sin θ; ∆s = L′ + ∆d; ∆sf = 0; and ∆s0 = ∆d.

L' is the distance moved up the inclined plane

So we have;

(1/2)k∆d² + mg(∆d + L′)sin θ =

-(µk)mg cos θ (∆d + L′)

Making L' the subject of the formula, we have;

L' = [(1/2)k∆d²] /(mg sin θ + (µk)mg cos θ)] - ∆d

L' = [(140/2)(0.9736²)] /(2 x 9.81 sin51.3) + (0.2 x 2 x 9.81cos 53.1)] - 0.9736

L' = (66.353)/[(15.696) + (2.3544)]

L' = (66.353)/18.05 = 3.43m

This is the distance moved up the inclined plane. So it's distance feom it's initial position is 4m - 3.43m = 0.57m

3 0
4 years ago
How does stuff fall?
drek231 [11]

Answer:

Gravity is the force that allows for all objects to fall.

4 0
3 years ago
An electron is traveling horizontally toward the north in a uniform magnetic field that is directed vertically downward. In what
Arte-miy333 [17]

Answer:

e) upwrad z axis

Explanation:

To know the direction of the force we use the right hand rule.

The thumb points in the direction of the velocity, the fingers extended in the direction of the magnetic field and the palm of the hand in the direction of the force, this is for a positive charge if the charge is negative the force is in the opposite direction of The palm of the hand.

 

Let's apply to our case.

The thumb is in the x direction, the fingers in the vertical direction and since the electron has a negative charge, the force is on the z axis (perpendicular to the blade, coming out)

In general, in the nomenclature of the cardinal points the positive x-axis is the East, the positive y-axis is the North. Therefore the answer must be up on the z axis

8 0
3 years ago
Please help me with these I might need more than only 1 person to answer ​
Sindrei [870]

Explanation:

a) copper

b) olive oil

Hope it helps✌✌

7 0
3 years ago
In order for the ball to be able to make a complete circle around the peg, there must be sufficient speed at the top of its arc
Vesna [10]

Answer:

Explanation:

Let T be the tension in the swing

At top point mg-T=\frac{mv^2}{r}

where v=velocity needed to complete circular path

r=distance between point of  rotation to the ball center=L+\frac{d}{2} (d=diameter of ball)

Th-resold velocity is given by mg-0=\frac{mv^2}{r}

To get the velocity at bottom conserve energy at Top and bottom

At top E_T=mg\times 2L+\frac{mv^2}{2}

Energy at Bottom E_b=\frac{mv_0^2}{2}

Comparing two as energy is conserved

v_0^2=4gr+gr

v_0^2=5gr

v_0=\sqrt{5gr}

v_0=\sqrt{5g\left ( \frac{d}{2}+L\right )}

6 0
3 years ago
Other questions:
  • A trained attack octopus can crawl at a velocity of 0.3m/s. If the octopus crawls towards its victim for 30 seconds, what is the
    11·1 answer
  • Calculate the time (in seconds) needed for a car to accelerating from 0 m/s to 10 m/s at 5 m/s^2?
    6·1 answer
  • The temperature of a sample of silver increased by 24.0 °C when 269 J of heat was applied. What is the mass of the sample?
    11·1 answer
  • Quantities must have different units before they can be added or subtracted.
    13·1 answer
  • Who was copernicus and what have he done for science?
    15·1 answer
  • A pirate is looking for buried treasure. He wandered 30m due north and 40m due
    6·1 answer
  • why is it important to create pictorial and physical models before trying to solve an equation, solving a physics problem
    14·2 answers
  • In a flying ski jump, the skier acquires a speed of 110 km/h by racing down a steep hill and then lifts off into the air from a
    12·1 answer
  • This is 30% of my overall grade
    11·2 answers
  • Can I improve the design of my simple machine? How?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!