As the spring returns to it's equilibrium position, it performs
1/2 (4975 N/m) (0.097 m)² ≈ 23 J
while the gravitational force (opposing the block's upward motion) performs
-(0.244 kg) g<em> </em>(0.097 m) ≈ -2.3 J
of work on the block. By the work energy theorem, the total work done on the block is equal to the change in its kinetic energy:
23 J - 2.3 J = 1/2 (0.244 kg) v² - 0
where v is the speed of the block at the moment it returns to the equilibrium position. Solve for v :
v² = (23 J - 2.3 J) / (1/2 (0.244 kg))
v = √((23 J - 2.3 J) / (1/2 (0.244 kg)))
v ≈ 44 m/s
After leaving the spring, block is in free fall, and at its maximum height h it has zero vertical velocity.
0² - (44 m/s)² = 2 (-g) h
Solve for h :
h = (44 m/s)² / (2g)
h ≈ 2.3 m
Here are the correct steps involved in energy production:
<span>Step 1 - Consumption of food
Step 2 - breakdown of starch into glucose
Step 3 - absorption of glucose molecules
</span>Step 4 -cellular respiration in mitochondria<span>
Step 5 - creation of ATP
ATP is the end-product of aerobic respiration and this occurs in living organisms as soon as they have begun metabolizing the food that they have consumed.</span>
Answer:
Explanation:
Given
capacitance 
Resistance 
Applied Voltage 

Charge on Capacitor in a R-C circuit is given by





Answer:
what is your question?..... .
Answer:
kE=0.0735 J
Explanation:
Given that
Radius ,R=10 cm = 0.1 m
Mass ,m= 3 kg
Angular speed ,ω = 3.5 rad/s
We know that moment of inertia for solid sphere given as

Kinetic energy

Now by putting the values


kE=0.0735 J
Therefore the kinetic energy will be 0.0735 J