Answer:
Explanation:
Given that,
Mass of star M(star) = 1.99×10^30kg
Gravitational constant G
G = 6.67×10^−11 N⋅m²/kg²
Diameter d = 25km
d = 25,000m
R = d/2 = 25,000/2
R = 12,500m
Weight w = 690N
Then, the person mass which is constant can be determined using
W =mg
m = W/g
m = 690/9.81
m = 70.34kg
The acceleration due to gravity on the surface of the neutron star is can be determined using
g(star) = GM(star)/R²
g(star) = 6.67×10^-11 × 1.99×10^30 / 12500²
g (star) = 8.49 × 10¹¹ m/s²
Then, the person weight on neutron star is
W = mg
Mass is constant, m = 70.34kg
W = 70.34 × 8.49 × 10¹¹
W = 5.98 × 10¹³ N
The weight of the person on neutron star is 5.98 × 10¹³ N
The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
If the desk doesn't move, then it's not accelerating.
If it's not accelerating, then the net force on it is zero.
If the net force on it is zero, then any forces on it are balanced.
If there are only two forces on it and they're balanced, then they have equal strengths, and they point in opposite directions.
So the friction on the desk must be equal to your<em> 245N</em> .
Answer:
Tension T1 is less than tension T2.
T1 < T2
Explanation:
According to given data,
mass of box A ( mA) is grater than mass of box B (mB)
we can write,
m(A) > m(B)
Newton's second law states that:
Tension of object is directly proportional to the mass of the system.
T ∝ m
here Boxes A and B are being pulled to the right on a frictionless surface,
so Tension T1 generates due to the mass of box A m(A)
and Tension T2 arises due to mass of the system m(A) + m(B)
Thus tension T1 will be less than tension T2
T1 < T2
learn more about Tension force here:
<u>brainly.com/question/13175014</u>
<u />
#SPJ4