Answer:
The mass fraction of ferric oxide in the original sample :
Explanation:
Mass of the mixture = 3.110 g
Mass of 
Mass of 
After heating the mixture it allowed to react with hydrogen gas in which all the ferric oxide reacted to form metallic iron and water vapors where as aluminum oxide did not react.

Mass of mixture left after all the ferric oxide has reacted = 2.387 g
Mass of mixture left after all the ferric oxide has reacted = y

The mass fraction of ferric oxide in the original sample :

Your answer would be 0.00285 moles.
Answer:
Left hand side:-
Carbon - 12
HYdrogen - 28
Oxygen - 38
Right hand side:-
Carbon - 12
Hydrogen - 28
Oxygen - 38
Since, the number of atoms each side are equal, the reaction is balanced.
Explanation:
The given reaction is:-

Left hand side:-
Carbon - 12
HYdrogen - 28
Oxygen - 38
Right hand side:-
Carbon - 12
Hydrogen - 28
Oxygen - 38
<u>Since, the number of atoms each side are equal, the reaction is balanced.</u>
Answer:
31.7 °C
Explanation:
Charles law states that for volume of a gas is directly proportional to the absolute temperature for a fixed amount of gas at constant pressure
we can use the following equation
V1/T1 = V2/T2
where V1 is volume and T1 is temperature at first instance
V2 is volume and T2 is temperature at second instance
temperature should be in kelvin scale
T1 - 0 °C + 273 = 273 K
substituting the values in the equation
22.4 L / 273 K = 25.0 L / T2
T2 = 304.7 K
temperature in celcius is - 304.7 K - 273 = 31.7 °C
the gas must be 31.7 °C to reach a volume of 25.0 L
Since I don't have the diagram I'm going off my best estimate and the flow of the positive and negative charged protons and neutrons create a flow of energy when collided through a circuit or in this case the wire