The answer would be: C. 160.3 J/mol*K
To solve this question, you need to know the equation for Gibbs free energy formula. Entropy is expressed as delta S. The temperature would be expressed as T. Don't forget that temperature use Kelvin as unit, not Celsius
The formula would be:
G= H- T*S
130.5 kJ/mol= 178.3kJ/mol - (25+273.15K)*S
(298.15K)*S=178.3kJ/mol - 130.5 kJ/mol
S= (47.8kJ/mol)/ 298.15K=
S= 0.1603 kJ/mol*K= 160.3 J/mol*K ------> 1kJ= 1000J
Answer:
Number of moles of KClO3 required to produce 6.9 moles of oxygen gas is 4.6 moles.
Explanation:
The decomposition of potassium trioxochlorate(v) by heat to produce potassium chloride and oxygen gas is given by the balanced chemical equation below;
2KClO3(s) ----> 2KCl(s) + 3O2(g)
From the equation of the reaction, 2 moles of KClO3 produces 3 moles of oxygen gas when it decomposes under standard conditions of temperature and pressure.
The mole ratio of KClO3 to oxygen gas
is 2:3
When 6.9 moles of oxygen gas is produced, (2/3) * 6.9 moles of KClO3 will be required = 4.6 moles of KClO3
Therefore, number of moles of KClO3 required to produce 6.9 moles of oxygen gas is 4.6 moles
Replacement I don't see anything
Answer:
K = 0.2
Explanation:
Based on the chemical dissociation of N₂O₄:
N₂O₄ ⇄ 2NO₂
The equilibrium constant, K, of the reaction is:
K = [NO₂]² / [N₂O₄]
Now, if 20% of N₂O₄ is dissociated, 80% remains as N₂O₄ = 0.8mol/L = 0.8M
as 20% is dissociated, 0.2moles of N₂O₄ were dissociated and 0.2*2 = 0.4mol/L of NO₂ are produced.
Replacing in K:
K = [0.4M]² / [0.8M]
<h3>K = 0.2</h3>
Sugar is the solute since it is the thing that is being dissolved.
And the water is the solvent since it is the thing that contains the solute.