Answer:
The required angular speed the neutron star is 10992.32 rad/s
Explanation:
Given the data in the question;
mass of the sun M
= 1.99 × 10³⁰ kg
Mass of the neutron star
M
= 2( M
)
M
= 2( 1.99 × 10³⁰ kg )
M
= ( 3.98 × 10³⁰ kg )
Radius of neutron star R
= 13.0 km = 13 × 10³ m
Now, let mass of a small object on the neutron star be m
angular speed be ω
.
During rotational motion, the gravitational force on the object supplies the necessary centripetal force.
GmM
= / R
² = mR
ω
²
ω
² = GM
= / R
³
ω
= √(GM
= / R
³)
we know that gravitational G = 6.67 × 10⁻¹¹ Nm²/kg²
we substitute
ω
= √( ( 6.67 × 10⁻¹¹ )( 3.98 × 10³⁰ ) ) / (13 × 10³ )³)
ω
= √( 2.65466 × 10²⁰ / 2.197 × 10¹²
ω
= √ 120831133.3636777
ω
= 10992.32 rad/s
Therefore, The required angular speed the neutron star is 10992.32 rad/s
Answer:
The observable universe is still huge, but it has limits. because it's most likely like an plane all round.
Explanation:
A. lunar phases result from the changing lunar mass. Let me know if this helped.
Answer:
A. We have that radius r = 4.00m intensity I = 8.00 W/m^
total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W
b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2
c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J