Answer:
4.14 x 10²⁴ molecules CO₂
Explanation:
2 C₄H₁₀ + 13 O₂ --> 8 CO₂ + 10 H₂O
To find the number of CO₂ molecules, you need to start with 100 grams of butane (C₄H₁₀), convert to moles (using the molar mass), convert to moles of CO₂ (using coefficients from equation), then convert to molecules (using Avagadro's number). The molar mass of C₄H₁₀ is calculated using the quantity of each element (subscript) multiplied by the number on the periodic table. The ratios should be arranged in a way that allows for units to be cancelled.
4(12.011g/mol) + 10(1.008 g/mol) = 58.124 g/mol C₄H₁₀
100 grams C₄H₁₀ 1 mol C₄H₁₀ 8 mol CO₂
-------------------------- x ---------------------- x ---------------------
58.124 g 2 mol C₄H₁₀
6.022 x 10²³ molecules
x ------------------------------------ = 4.14 x 10²⁴ molecules CO₂
1 mol CO₂
Explanation:
At STP ,2.24 L contain 0.1 mole of N²
<h2>So,No. of molecules of N2 = 6.022*10²²</h2>
Explanation:
30 lb is 480 ounces
34 mi/second is 54.718 kilometre/ second
455 lb/ gal is 54521.024 grams / litre
50 cl is 500 millilitres
55nm is 5.5 × 10^-6 centimetre
Answer:
10.9%.
Explanation:
The first thing to do in order to solve this question is to Determine the value for the volume of the the cube. This can be done by taking the cube root of the length of the cube;
The volume of the cube = (length of the cube)^3 = length × length × length = 1.72 × 1.72 × 1.72 =( 1.72)^3 = 5.09cm^3.
The next thing you do is to Determine the exponential density, the can be done by using the formula below;
The exponential density = mass/ volume = 55. 786/ 5.09 = 10.96 g/cm^3.
Therefore, the percent error = (true density of the cube - exponential density of the cube)÷ true density of the cube × 100.
Hence, the percent error = 12.30 - 10.96/12.30 × 100 = 10.9%.
Answer:
i am not sure but its 2 ican"t qry
Explanation: