You have to divide 3000 miles with the 5 and it gives you a velocity of 600
The resistance would go down since you essentially have one less resistor
vf = 10 m/s. A ball with mass of 4kg and a impulse given of 28N.s with a intial velocity of 3m/s would have a final velocity of 10 m/s.
The key to solve this problem is using the equation I = F.Δt = m.Δv, Δv = vf - vi.
The impulse given to the ball with mass 4Kg is 28 N.s. If the ball were already moving at 3 m/s, to calculate its final velocity:
I = m(vf - vi) -------> I = m.vf - m.vi ------> vf = (I + m.vi)/m ------> vf = I/m + vi
Where I 28 N.s, m = 4 Kg, and vi = 3 m/s
vf = (28N.s/4kg) + 3m/s = 7m/s + 3m/s
vf = 10 m/s.
.
Answer:
The final acceleration of the car, v = 70 m/s
Explanation:
Given,
The initial velocity of the car, u = 20 m/s
The acceleration of the car, a = 10 m/s²
The time period of travel, t = 5 s
Using the I equations of motion
v = u + at
= 20 + 10(5)
= 20 + 50
= 70 m/s
Hence, the final acceleration of the car, v = 70 m/s
Answer:
When you exert a force on a baseball, there exists an equal and opposite force on the ball therefore, the ball will accelerate in opposite direction.
Explanation:
When you hit a ball with baseball bat, the bat exerts a great force on the ball which causes the ball to accelerate in the opposite direction. It is to be noted that the mass of bat is much greater than mass of ball but the acceleration of ball is also greater than the acceleration of the bat so both bat and ball almost exert same magnitude of force but in opposite direction and as a result both bat and ball accelerate in opposite direction, the deciding factor is of course the relative force applied by the batter and the bowler.