1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
11

Mass and energy are alternate aspects of a single entity called mass-energy. The relationship between these two physical quantit

ies is Einstein's equation, E = mc2, where E is energy, m is mass, and c is the speed of light. In a combustion experiment, it was found that 10.965 g of hydrogen molecules combined with 87.000 g of oxygen molecules to form water and released 1.554 × 103 kJ of heat. Use Einstein's equation to calculate the corresponding mass change in this process.
Physics
1 answer:
Sever21 [200]3 years ago
8 0

Answer:

Explanation:

ΔE = Δm × c^2

where,

ΔE = change in energy released with respect to change in mass

= 1.554 × 10^3 kJ

= 1.554 × 10^6 J

Δm = change in mass

c = the speed of light.

= 3 × 10^8 m/s

Equation of the reaction:

2H2 + O2 --> 2H2O

Mass change in this process, Δm = 1.554 × 10^6/(3 × 10^8)^2

= 1.727 × 10^-11 kg

The change in mass calculated from Einstein equation is small that its effect on formation of product will be negligible. Hence, law of conservation of mass holds correct for chemical reactions.

You might be interested in
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
Why do elements within a group have similar chemical properties
CaHeK987 [17]
Elements<span> in the same </span>group<span> in the periodic table </span>have similar chemical properties<span>. This is because their atoms </span>have<span> the same number of electrons in the highest occupied energy level. </span>Group<span> 1 </span>elements<span> are reactive metals called the alkali metals.</span>Group<span> 0 </span>elements<span> are unreactive non-metals called the noble gases.
</span>
4 0
3 years ago
What happens to the energy of a wave as it moves away from its source?
Eddi Din [679]

Answer:

As the particles move further away from their normal position (up towards the wave crest or down towards the trough), they slow down.

Explanation:

This means that some of their kinetic energy has been converted into potential energy – the energy of particles in a wave oscillates between kinetic and potential energy. Hope that this helps you and have a great day :)

3 0
3 years ago
Please help with this :(
Angelina_Jolie [31]

Answer:

I'm sorry I don't have a answer but I like your pfp

8 0
2 years ago
What waves are used in the hospitals to take pictures of bones
stich3 [128]

Answer:

An X-ray is used to take pictures of your bones. The waves that are used are known as radiation waves.

7 0
3 years ago
Other questions:
  • Three equal point charges, each with charge 1.15 μCμC , are placed at the vertices of an equilateral triangle whose sides are of
    10·1 answer
  • A word that means to squeeze a gas in to a smaller place
    15·2 answers
  • The concept of plate tectonics regards the earth's ___ as broken into a number of ___ that are in motion relative to each other.
    13·1 answer
  • A car starts from rest and reaches a speed of 75 m/s in 10 seconds. What is the acceleration of the car?
    15·1 answer
  • Hi i was wondering if you could help me understand Kelvins? My question on my work says "Which of the following is the SI unit u
    9·1 answer
  • A lunar lander is making its descent to moon base i. the lander descends slowly under the retro-thrust of its descent engine. th
    5·2 answers
  • sound waves generated in a classroom must _______ through an open doorway in order to propagate into the hallway. reflect refrac
    14·2 answers
  • Write code to compare two numbers. The code should check whether the first number is less than or equal to the second and then d
    9·1 answer
  • What is the process in which the work of scientists is evaluated by other researchers? a. Scientific critique c. scientific inqu
    7·2 answers
  • A rocket is launched from a height of 3 m with an initial velocity of 15 m/s What is the maximum height of the rocket? When will
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!