Answer:
The distance of the first bright fringe is given as 
The distance of the second dark fringe from the central bright fringe is given as 
Explanation:
From the question we are told that
The slit separation distance is 
The distance of the slit from the screen is 
The wavelength is 
For constructive interference to occur the distance between the two slit is mathematically represented as

Where m is the order of the fringe which has a value of 1 for first bright fringe
Substituting values


For destructive interference to occur the distance between the two slit is mathematically represented as
![Y_D = [n + \frac{1}{2} ] \frac{\lambda D}{d}](https://tex.z-dn.net/?f=Y_D%20%20%3D%20%20%5Bn%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5D%20%5Cfrac%7B%5Clambda%20D%7D%7Bd%7D)
m = 2
so the formula to get the dark fringe is 
Now substituting values
![Y_D = [ 1 + \frac{1}{2} ] * \frac{633 *10^{-9} * 3.23 }{0.00115}](https://tex.z-dn.net/?f=Y_D%20%3D%20%5B%201%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5D%20%2A%20%5Cfrac%7B633%20%2A10%5E%7B-9%7D%20%2A%203.23%20%7D%7B0.00115%7D)


Answer:

Explanation:
given,
total deflection = 4.12 cm
Electric field = 1.1 ×10³ V/m
plate length = 6 cm
distance between them = 12 cm
using formula

q = 1.6 × 10⁻¹⁹ C
m = 9.11 x 10⁻³¹ kg
d = 0.06 m
L = 0.12 m

v_0 = 6496355.63 m/s




Density is directly proportional to mass. So if there's less matter inside object, its density will also reduce.
A - the objects are too small
GRAVITATIONAL FORCE IS EXPERIENCED BY ALL OBJECTS IN THE UNIVERSE ALL THE TIME. BUT THE ORDINARY OBJECTS YOU SEE EVERY DAY HAVE MASSES SO SMALL THAT THEIR ATTRACTION TOWARD EACH OTHER IS HARD TO DETECT. -https://www.ftsd.org/cms/lib6/MT01001165/Centricity/ModuleInstance/630/CHAPTER_2_NOTES_FOR_EIGHTH_GRADE_PHYSICAL_SCIENCE.pdf