Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
Answer:
4 m/s
Explanation:
speed = distance/time
speed= 20/5 = 4
similarly for all no. the answer is constant,i.e. 4
The work done is 375 J
Explanation:
The work done by a force in moving an object is given by

where
F is the magnitude of the force
d is the displacement
is the angle between the direction of the force and the displacement
In this problem,
F = 75 N is the force applied to the couch
d = 5 m is the displacement
Assuming the force applied to the couch is parallel to the motion, 
And so, the work done is

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
The red car would experience the greatest acceleration.
Explanation:
Newton says that Force equals mass times acceleration or F = ma
We get a = F/m
If we want the greatest acceleration or a, mass or m must be the lowest.
The acceleration of the runner in the given time is 2.06m/s².
Given the data in the question;
Since the runner begins from rest,
- Initial velocity;

- Final velocity;

- Time elapsed;

Acceleration of the runner; 
<h3>Velocity and Acceleration</h3>
Velocity is the speed at which an object moves in a particular direction.
Acceleration is simply the rate of change of the velocity of a particle or object with respect to time. Now, we can see the relationship from the First Equation of Motion

Where v is final velocity, u is initial velocity, a is acceleration and t is time elapsed.
To determine the acceleration of the runner, we substitute our given values into the equation above.

Therefore, the acceleration of the runner in the given time is 2.06m/s².
Learn more about Equations of Motion: brainly.com/question/18486505