Answer:
the first one is D
Explanation:
so if the others u put are right the the second would be c
You've failed because you failing becomes a statement rather than it becoming fact or what actually happened.
<span>c. They help discard some myths about objects in space.
When we learn something new, then we know more stuff,
and that helps us avoid ignorance and superstition.
The REAL question is:
</span><span>Why should we continue to send robotic spacecrafts,
and NOT spacecrafts piloted by people ?</span>
In the single-slit experiment, the displacement of the minima of the diffraction pattern on the screen is given by

(1)
where
n is the order of the minimum
y is the displacement of the nth-minimum from the center of the diffraction pattern

is the light's wavelength
D is the distance of the screen from the slit
a is the width of the slit
In our problem,


while the distance between the first and the fifth minima is

(2)
If we use the formula to rewrite

, eq.(2) becomes

Which we can solve to find a, the width of the slit:
Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R