Answer:
A. 91 meters north
Explanation:
Take +y to be north.
Given:
v₀ = 13 m/s
a = 0 m/s²
t = 7 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13 m/s) (7 s) + ½ (0 m/s²) (7 s)²
Δy = 91 m
The displacement is 91 m north.
Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round =
=
= 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum



ms⁻¹
At 4 m/s?
How do the two kinetic energies compare to one another? QUADRUPLES !
#3 What is the kinetic energy of a 2,000 kg bus that is moving at 30 m/s?
Potential energy
Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and
when moving towards observer
With
of 76 then taking speed in air as 343 m/s we have


Similarly, with
of 65 we have

Now

v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain
