1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
13

PLEASE HURRY

Physics
1 answer:
Rashid [163]3 years ago
7 0

Answer:

1:knowledge of the structure of DNA

2:an understanding of hemoglobin

4:ground fault circuit interrupters

7:aerogel

Explanation:

You might be interested in
Mechanical advantage of a machine can be increased by designing it for:
Tems11 [23]

Answer:(4).

Explanation:

8 0
3 years ago
xConsider the following reduction potentials: Cu2+ + 2e– Cu E° = 0.339 V Pb2+ + 2e– Pb E° = –0.130 V For a galvanic cell employi
slega [8]

Answer:

Approximately \rm 90\; kJ.

Explanation:

Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (E^{\circ}(\text{cell})) is equal to

E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode}).

There are two half-reactions in this question. \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu and \rm Pb^{2+} + 2\,e^{-} \rightleftharpoons Pb. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of E^{\circ}(\text{cell}) should be positive.

In this case, E^{\circ}(\text{cell}) is positive only if \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu is the reaction takes place at the cathode. The net reaction would be

\rm Cu^{2+} + Pb \to Cu + Pb^{2+}.

Its cell potential would be equal to 0.339 - (-0.130) = \rm 0.469\; V.

The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:

\Delta G^{\circ} = n \cdot F \cdot E^{\circ} (\text{cell}),

where

  • n is the number moles of electrons transferred for each mole of the reaction. In this case the value of n is 2 as in the half-reactions.
  • F is Faraday's Constant (approximately 96485.33212\; \rm C \cdot mol^{-1}.)

\begin{aligned}\Delta G^{\circ} &= n \cdot F \cdot E^{\circ} (\text{cell})\cr &= 2\times 96485.33212 \times (0.339 - (-0.130)) \cr &\approx 9.0 \times 10^{4} \; \rm J \cr &= 90\; \rm kJ\end{aligned}.

5 0
3 years ago
A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE g
7nadin3 [17]

Answer:

(a) r = 1.062·R_E = \frac{531}{500} R_E

(b) r = \frac{33}{25} R_E

(c) Zero

Explanation:

Here we have escape velocity v_e given by

v_e =\sqrt{\frac{2GM}{R_E} } and the maximum height given by

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r}

Therefore, when the initial speed is 0.241v_e we have

v = 0.241\times \sqrt{\frac{2GM}{R_E} } so that;

v² = 0.058081\times {\frac{2GM}{R_E} }

v² = {\frac{0.116162\times GM}{R_E} }

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r} is then

\frac{1}{2} {\frac{0.116162\times GM}{R_E} }-\frac{GM}{R_E} = -\frac{GM}{r}

Which gives

-\frac{0.941919}{R_E} = -\frac{1}{r} or

r = 1.062·R_E

(b) Here we have

K_i = 0.241\times \frac{1}{2} \times m \times v_e^2 = 0.241\times \frac{1}{2} \times m  \times \frac{2GM}{R_E} = \frac{0.241mGM}{R_E}

Therefore we put  \frac{0.241GM}{R_E} in the maximum height equation to get

\frac{0.241}{R_E} -\frac{1}{R_E} =-\frac{1}{r}

From which we get

r = 1.32·R_E

(c) The we have the least initial mechanical energy, ME given by

ME = KE - PE

Where the KE = PE required to leave the earth we have

ME = KE - KE = 0

The least initial mechanical energy to leave the earth is zero.

3 0
3 years ago
Read 2 more answers
What is a good example of netwon 3rd law​
satela [25.4K]

A fish pushes water backwards in order to move forward is a good example of Newton's 3rd Law.

8 0
3 years ago
Force → F = ( − 8.0 N ) ˆ i + ( 6.0 N ) ˆ j acts on a particle with position vector → r = ( 3.0 m ) ˆ i + ( 4.0 m ) ˆ j . What a
andrey2020 [161]

Explanation:

It is given that,

Force, F=(-8\ N)i+(6\ N)j

Position vector, r=(3i+4j)\ m

(a) The torque on the particle about the origin is given by :

\tau=F\times r\\\\\tau=(-8i+6j)\times (3i+4j)\\\\\tau=(-50k)\ N-m

(b) To find the angle between r and F use dot product formula as :

F{\cdot} r=|F||r|\ \cos\theta\\\\\cos\theta=\dfrac{F{\cdot} r}{|F| |r|}\\\\\cos\theta=\dfrac{(-8i+6j){\cdot} (3i+4j)}{\sqrt{(-8)^2+6^2} \times \sqrt{3^2+4^2} }\\\\\cos\theta=\dfrac{-24+24}{\sqrt{(-8)^2+6^2} \times \sqrt{3^2+4^2} }\\\\\cos\theta=0\\\\\theta=90^{\circ}

Hence, this is the required solution.

8 0
3 years ago
Read 2 more answers
Other questions:
  • A syringe containing 12.0 mL of dry air at 25 C is placed in a sterilizer and heated to 100.0 C. The syringe is sealed, but th
    15·1 answer
  • A weightlifter lifts a 125-kg barbell straight up 1.15 m in 2.5 s. What was the power expended by the weightlifter?
    14·1 answer
  • A 7.00 kg mass is being pulled by a 53.8 n force what is the acceleration
    6·1 answer
  • What is measurement?
    5·2 answers
  • In lab you find that a 1-kg rock suspended above water weighs 10 N. When the rock is suspended beneath the surface of the water,
    9·1 answer
  • A toy cannon tosses a rubber ball straight upward. A motion sensor measures the speed of the ball as it leaves the cannon. Using
    11·1 answer
  • A red blood cell has a diameter of approximately 8 micrometers, or 0.008 um.
    8·2 answers
  • If the mirror reflection coefficients for a laser resonator of length 5 m are 98.5% and 60%, and there are no losses, determine
    6·2 answers
  • The displacement of a wave from the baseline.this affects thrloudness of sound
    6·1 answer
  • A) What minimum velocity must a roller coaster have such that the riders don’t fall out at the top of a loop with a radius of 12
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!