The statement which is true of a wave that’s propagating along the pavement and girders of a suspension bridge is A. The wave is mechanical, with particles vibrating in a direction that is parallel to that of the wave, forming compressions and rarefactions.
The answer is 36 kilometers per hour, or 10 meters per second.
Answer: height = 3.98m
Explanation: by placing the watermelon at a height above the ground, it has a potential energy of the formulae
p = mgh
p = potential energy = 4.61kJ = 4610J
m = mass of watermelon = 118 kg
g = acceleration due gravity = 9.8 m/s²
4610 = 118 * 9.8 * h
h = 4610/ 118 * 9.8
h = 4610/ 1156.4
h = 3.98m
<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>