I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J.
At point A, all this energy has converted into kinetic energy, which is:

And since K=7.35 J, we can find the velocity, v:
Decrease because its 0.0 m/s
Answer:
a) v = √(v₀² + 2g h), b) Δt = 2 v₀ / g
Explanation:
For this exercise we will use the mathematical expressions, where the directional towards at is considered positive.
The velocity of each ball is
ball 1. thrown upwards vo is positive
v² = v₀² - 2 g (y-y₀)
in this case the height y is zero and the height i = h
v = √(v₀² + 2g h)
ball 2 thrown down, in this case vo is negative
v = √(v₀² + 2g h)
The times to get to the ground
ball 1
v = v₀ - g t₁
t₁ =
ball 2
v = -v₀ - g t₂
t₂ = - \frac{v_{o} + v }{ g}
From the previous part, we saw that the speeds of the two balls are the same when reaching the ground, so the time difference is
Δt = t₂ -t₁
Δt =
Δt = 2 v₀ / g
Answer:
68.585m/sec , 779.1 N
Explanation:
To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.
From centripetal motion.
F =( mv^2)/2
But since we are dealing with weightlessness
r = 480m
g = 9.8m/s^2
M also cancels, so forget M.
V^2 = Fr
V = √ Fr
V =√ (9.8 x 480) = 4704
= 68.585m/sec.
b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960
= 4.9m/sec^2.
Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)
159kg × ( 9.8-4.9)
159kg × 4.9
= 779.1N