Rust is iron oxide, the corrosion product of iron when exposed to the oxygen in the air. Tin is not iron, so you cannot produce iron oxide from the corrosion of tin. Because the layer of tin on the surface of the steel prevents atmospheric oxygen and moisture from contacting the steel.
<em>B</em><em> </em><em>i</em><em>s</em><em> </em><em>r</em><em>i</em><em>g</em><em>h</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>t</em><em>h</em><em>i</em><em>n</em><em>k</em><em> </em><em>b</em><em>r</em><em>o</em><em>/</em><em>s</em><em>i</em><em>s</em>
Well you see unicellular organisms are very unique in the fact that they live all on their own and move around with a flagellum or little motor, but to the point unicellular organisms carry out essentially every function in life and they must in order to simply survive. So it's most likely D.
Answer:
124.56 moles of Hydrogen atoms.
Explanation:
We'll begin by calculating the number of moles of ethane that contains 1.25×10²⁵ molecules. This can be obtained as follow:
From Avogadro's hypothesis, 1 mole of any substance contains 6.02x10²³ molecules. This implies that 1 mole of ethane also contains 6.02x10²³ molecules.
Thus, 6.02x10²³ molecules are present in 1 mole of ethane.
Therefore, 1.25×10²⁵ molecules are present in = 1.25×10²⁵/6.02x10²³ = 20.76
Therefore, 20.76 moles of ethane contains 1.25×10²⁵ molecules.
Finally, we shall determine the number of mole of Hydrogen in 20.76 moles of ethane. This can be obtained as follow:
Ethane has formula as C2H6.
From the formula, 1 mole of ethane, C2H6 contains 6 moles of Hydrogen atoms.
Therefore, 20.76 moles of ethane will contain = 20.76 × 6 = 124.56 moles of Hydrogen atoms.
Therefore, 1.25×10²⁵ molecules of ethane contains 124.56 moles of Hydrogen atoms.