When pure HA is added to the buffer, the buffer component ratio and the pH decrease.
<h3>State and explain the relative change in the pH and in the buffer-component concentration ratio, [NaA]/[HA] for the dissolve of pure HA in the buffer.</h3>
When pure HA is added to the buffer, the buffer component ratio and the pH decrease. The added HA increases the concentrations of NA and HA. However, there is a greater relative increase in the concentration of HA. Hence, the ratio of [NaA]/[HA] decreases, causing the solution to become more acidic.
The capacity of a buffer to withstand pH change is measured. The concentration of the buffer's components namely, the acid and its conjugate base determine this ability. Greater buffer capacity is associated with higher buffer concentration.
To learn more about buffer-component, Visit:
brainly.com/question/9542245
#SPJ4
<span>Stoichiometry deals with the quantitative measurement of reactants and products in a chemical reaction. Let suppose you are given with following reaction;
A + 2 B </span>→ 3 C
According to this reaction 1 mole of A reacts with 2 moles of B to produce 3 moles of C. Now using the concept of mole one can easily measure the amount of reactants reacted and the amount of product formed, as...
1 Mole Exactly equals 6.022 × 10²³ particles
1 Mole of Gas (at STP) exactly occupies 22.4 L Volume
1 Mole of any compound exactly equals the molar mass in grams
Therefore, <span>Stoichiometry is very helpful in quantitative analysis.</span>
There is no specific name for a glacier that break off as an iceberg. However, the part of the glacier in which this happens is called the "zone of wastage". Chunks break off in a process called "calving".
Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,

The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get

Therefore, the value of reaction quotient, Q is 0.0625.