All matter is made up of substances called elements, which have specific chemical and physical properties and cannot be broken down into other substances through ordinary chemical reactions. Gold, for instance, is an element, and so is carbon. There are 118 elements, but only 92 occur naturally.
<h3>
<u>P</u><u>LEASE </u><u>MARK</u><u> ME</u><u> BRAINLIEST</u><u>.</u></h3>
Answer:
ΔSv = 0.1075 KJ/mol.K
Explanation:
Binary solution:
∴ a: solvent
∴ b: solute
in equilibrium:
- μ*(g) = μ(l) = μ* +RTLnXa....chemical potential (μ)
⇒ Ln (1 - Xb) = ΔG/RT
∴ ΔG = ΔHv - TΔSv
⇒ Ln(1 -Xb) = ΔHv/RT - ΔSv/R
∴ Xb → 0:
⇒ Ln(1) = ΔHv/RT - ΔSv/R
∴ T = T*b....normal boiling point
⇒ 0 = ΔHv/RT*b - ΔSv/R
⇒ ΔSv = (R)(ΔHv/RT*b)
⇒ ΔSv = ΔHv/T*b
∴ T*b = 80°C ≅ 353 K
⇒ ΔSv = (38 KJ/mol)/(353 K)
⇒ ΔSv = 0.1075 KJ/mol.K
Answer:
B.) +6
Explanation:
To find the oxidation number of sulfur, we can assume the oxidation numbers of the other elements.
What I mean is, oxygen (O) always has an oxidation number of (-2). That being said, if there are 4 oxygen atoms, oxygen is contributing -8 overall. We also know that hydrogen generally has an oxidation number of (+1). Like before, if there are 2 hydrogens, it must be contributing +2.
If the overall molecule is neutral, we have to get these charges to balance out.
In essence, -8 + 2 + ? = 0?
If you combine the charges from oxygen and hydrogen, you are left with -6. Therefore, to make the molecule neutral, sulfur must have an oxidation number of +6.
<span>Molten barium
chloride is separetes:</span><span>
BaCl</span>₂(l) →
Ba(l) + Cl₂(g), <span>
but first ionic bonds in this salt are separeted
because of heat:
BaCl</span>₂(l) →
Ba²⁺(l) + 2Cl⁻(l).
Reaction of reduction
at cathode(-): Ba²⁺(l) + 2e⁻ → Ba(l).
Reaction of oxidation
at anode(+): 2Cl⁻(l) → Cl₂(g) + 2e⁻.
The anode is positive
and the cathode is negative.